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ABSTRACT

The objective of this study is to explore concepts for control of turbulent bound-

ary layers leading to skin-friction reduction using the direct numerical simulation

technique. This report is divided into three parts where three different control

methods are investigated: an active control by sensing and perturbing structures

near the wall, a feedback control procedure guided by control theory, and a passive

control by longitudinal riblets.

In PART I significant drag reduction is achieved when the surface boundary

condition is modified to suppress the dynamically significant coherent structures

present in the wall region. The wall-normal or spanwise velocity at the wall was

set to be 1800 out of phase with the corresponding velocity component near the
wall. The drag reduction is accompanied with significant reduction in the intensity

of the wall-layer structures and reductions in the magnitude of Reynolds shear

stress throughout the flow. The apparent outward shift of the controlled data

indicates a displaced virtual origin of the boundary layer and a thickened sublayer.

Time sequences of the flow fields show that there are two essential drag reduction

mechanisms. Firstly, within a short time after the control is applied, drag is reduced

mainly by deterring the sweep motion without modifying the primary streamwise

vortices above the wall. Consequently, the high skin-friction regions on the wall are

lifted to the interior of the channel (y+ p 5) by the control schemes. Secondly, the

active control changes the evolution of the wall vorticity layer by stabilizing and

preventing lifting of the spanwise vorticity near the wall, which may have led to

the suppression of a source of new streamwise vortices above the wall.

In PART II mathematical methods of control theory are applied to the problem

of control of fluid flow with the long range objective of developing effective methods

for the control of turbulent flows. The procedure of how to cast the problem of

controlling turbulence into a problem in optimal control theory is presented using

model problems through the formalism and language of control theory. Then a sub-
optimal control and feedback procedure for general stationary and time-dependent

problems are presented using methods of calculus of variations through the adjoint

state and gradient algorithms. This suboptimal feedback control procedure is ap-

plied to the stochastic Burgers equation. Two types of controls are investigated:

distributed and boundary controls. The control inputs are the momentum forcing
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for the distributed control and the boundary velocity for the boundary control.

Costs to be minimized are defined as the sum of the mean square velocity gradi-
ent inside the domain for the distributed control or the square velocity gradient at
the wall for the boundary control; and in both cases a term was added to account

for the implementation cost. Several cases of both controls have been numerically

simulated to investigate the performances of the control algorithm. Most cases con-

sidered show significant reductions of the costs. A version of the feedback procedure

which is more effective for practical implementation has been considered and im-

plemented, and the application of this algorithm also shows significant reductions

of the costs.

In PART III direct numerical simulation is performed to analyze turbulent flow

over longitudinal riblets, and to educe the mechanism of drag reduction by riblets.

The computed drags on the riblet surfaces are in good atgreement with the existing

experimental data. The virtual origin of the wall is defined such that the maxi-

mum turbulent kinetic energy production occurs at y+ • 13. As the ridge angle of

the riblets increases, the virtual origin moves closer to the riblet tip. The mean-
velocity profiles based on this vwrtual origin show upward and downward shifts in

the log-law for drag-decreasing and drag-increasing cases, respectively. Turbulence

statistics above the riblets are computed and compared with those above the flat
plate. Differences in the mean-velocity profile and turbulence quantities are found
to be limited to the inner region of the boundary layer. Velocity and vorticity fluc-

tuations as well as the Reynolds shear stresses above the riblets are reduced in drag-

reducing configurations. Quadrant analysis indicates that the riblets intensify the
positive Reynolds-shear-stress producing events in drag-increasing configurations,
while they mitigate these events in drag-reducing configurations. The Reynolds

shear stresses from the first and third quadrant events are nearly unchanged by

the riblets. From examination of the instantaneous flow fields, a drag reduction
mechanism by riblets is proposed: riblets with small spacings reduce viscous drag

by restricting the location of the streamwise vortices above the wetted surface such

that only a limited area of the riblets is exposed to their induced downwash of high
speed fluid. Only the tip region is exposed to high wall-shear rates in drag-reducing

configurations, whereas, in drag-increasing configurations, both the middle and tip

regions are exposed to them.
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PREFACE

The problem of controlling turbulent flows is one of the most challenging prob-

lems in fluid dynamics. Despite several studies of boundary layer control in the
1950s, no successful practical applications resulted, and efforts on this topic sub-

sided. The revival of interest in controlling turbulent flows in recent years may be
attributed to several factors. The accumulated knowledge of coherent structures in

turbulent flows points to new methods of controlling turbulence. Rising fuel costs
provided economical impetus for development of more efficient and longer range
aircraft. Finally, the substantial advance in computer hardware has made it feasi-

ble to test active control strategies through direct numerical simulations and has
also led to the development of miniature sensors, micro-processors and actuators
for the implementation of control strategies.

Coutrol experiments have enjoyed considerable success in mixing layers where

the near-field hydrodynamic mechanisms are well understood. However, the ori-
gin and dynamics of coherent structures in turbulent boundary layers are still not

completely known; therefore, turbulence control experiments have been largely em-
pirical and largely based on the qualitative observations of coherent structures.

Many efforts have been directed towards manipulation of turbulent boundary

layers by passive devices both externally (with thin flat plates or airfoil section
devices placed in the outer region of the boundary layer) and internally (with
streamwise grooves submerged in the inner region of the boundary layer) for the
purpose of reducing viscous drag. Such devices play a passive role in the sense

that there is no feedback loop to sense and then manipulate flow structures. The
experimental data are sufficiently consistent to anticipate potential of such devices
for turbulent drag reduction, even though the detailed mechanisms are not clearly

understood. Most notably, the use of grooved surfaces (riblets) has found some

practical applications.

As compared to a passive control strategy, application of active control to tur-
bulent flows is much more difficult, because the control strategy would involve a

timely response through a feedback loop as flow structures are modified. Proper
implementation of active control in a fully developed turbulent flow which is highly

1



unsteady, three-dimensional and stochastic would require construction and imple-

mentation of many miniature actuators and sensors. Most existing active control

strategies have been applied to transitional flows.

When the physics of a problem is well-known, such as the existence of organized

patterns, one may attempt to devise a scheme to manipulate these patterns, or

at least impede their formation by preassigned kinematic modifications. However,

when the physics of a phenomenon is not known or is very complicated, it is tempt-

ing to appeal to the more systematic but less intuitive methods of control theory.

Application of control theory to fluid mechanics problems has not yet been consid-

ered mainly because of its complexity. With the advance of super computers and

the ability for direct numerical simulation of turbulence, however, the capability

now exists to test the viability of using control theory in turbulent flows.

This study consists of three parts. In PART I, we investigate several active

control strategies to explore concepts for manipulation of turbulent boundary layers

using direct numerical simulation. Dynamically significant coherent structures are

modified by applying either normal or spanwise velocity at the wall to achieve

skin-friction reduction. In PART II, we develop suboptimal control and feedback

procedures for unsteady flow using feedback control theory. The feedback control

procedures are then tested with the stochastic Burgers equation. In PART III,
we present simulations of turbulent flows over riblets to investigate the resulting

turbulence modifications and drag reduction mechanisms.
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PART I

Active Turbulence Control in Wall-Bounded Flows



CHAPTER 1

INTRODUCTION

The potential benefits of managing and controlling turbulent flows that occur in

various engineering applications are known to be significant. Organized structures

in turbulent flows play an important role in turbulent transport (Cantwell 1981 and

Robinson 1991). Therefore, attempts to control turbulent flows for engineering

applications have focused on the manipulation of the coherent structures. Most

turbulence control strategies have been developed for free-shear flows where the

hydrodynamic stability mechanism in the near field is basically understood (Ho

& Huang 1982). Turbulence control strategies to date for wall-bounded turbulent

flows have focused on passive approaches. For example, flow devices such as riblets

or LEBUs (Large-Eddy-Break-Up devices) may be placed in the boundary layer in

an attempt to suppress the formation or interaction of organized flow structures.

Such devices play a passive role in the sense that there exists no feedback loop

to sense and then manipulate flow structures. The present study is aimed at the

active control of dynamically significant coherent structures to achieve skin-friction

reduction. The control strategy will respond instantly through a feedback loop as

flow structures are modified.

The most widely observed coherent structures in the wall layer are streaks: elon-

gated regions of low- and high-speed fluid alternating in the spanwise direction.

From flow visualization data, Kline et al. (1967) pointed out that the produc-

tion of turbulence in boundary layers is largely due to the bursting event which

consists of the lift-up, oscillation, and violent breakup of the streaks. The sweep

event (Corino, & Brodkey 1969), which is described as the inrush of high-speed

fluid towards the wall, is also believed to be a major contributor to turbulence

production. Some of these event-oriented descriptions of important phenomena in

turbulent boundary layers are beginning to change, largely from examination of di-

rect numerical simulation databases. For example, the bursting event may not be

anything more than a consequence of the convection of a single streamwise vortex

past a fluid marker (Kim & Moin 1986). The passage of the vortex lifts the marker,

and as the marker wraps around the vortex, it appears as oscillation in a side view.
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In this chapter, we use the terms sweep and ejection at a point to simply denote

the flow direction towards or away from the wall respectively.

Contour plots of instantaneous turbulent velocity and pressure fluctuations show

that only the streamwise velocity component is significantly elongated in the stream-

wise direction. The pressure patterns are round, and the normal (to the wall) ve-

locity component is highly intermittent (Moin 1987). Therefore, intense regions of

turbulence production are also highly intermittent. One of the most striking fea-

tures of turbulent boundary layers are the strong shear layers protruding from the

wall into the flow. Jim6nez et al. (1988) note that the high density of these shear

layers, at least at low Reynolds numbers, has previously been overlooked. Virtually

every snap-shot of the flow in the form of a contour plot of the spanwise component

of vorticity, wz, contaiwi these shear layers. Moreover, their shape is very similar

to those observed in transitional channel flow (Jimenez 1987). The shear layers are

associated with high turbulence production and have long life times, travelling in a

straight path downstream (Johansson, Alfredsson & Kim 1987). In addition, both

experimental and numerical data indicate that the shear layers have high amplitude

pressure signatures at the wall (Jobansson, Her & Haritonidis 1987 and Alfredsson

et al. 1988), which is of particular interest for their detection in an active control

experiment.

Direct numerical simulations have emerged as a powerful tool in turbulence struc-

ture research. Owing to the availability of all the flow variables at many spatial

locations and the ability to readily alter flow boundary conditions, numerical simu-

lations also provide a unique laboratory for testing and designing turbulence control

concepts. Although some of the concepts may not turn out to be feasible for imple-

mentation, simulations can provide data on what may be possible to achieve just

from fluid dynamical considerations. The primary role of simulations in the field

of flow control will be to guide experiments for complex flows. Computer simula-

tions have been used for active stabilization of laminar boundary layers (Metcalfe

et al. 1986). Early work on control of fully developed turbulent flows via numerical

simulations has been limited to passive control (Kuhn et al. 1984).

In this study, we use the direct numerical simulation technique to explore con-

cepts for manipulation of turbulent channel flow with the ultimate goal of drag

reduction. The numerical technique used in this study is identical to that of Kim,

Moin & Moser (1987), to which the reader is referred for a detailed description.
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However, in this study, we calculated the time advancement for the convective terms

according to a third-order Runge-Kutta method instead of the original Adams-

Bashforth method. The boundary condition for the wall velocity components is

modified according to the particular control strategy.

The base flow is a fully developed channel flow. Fully developed turbulent chan-

nel flow is homogeneous in the streamwise and spanwise directions, and periodic

boundary conditions are used in these directions. Preliminary experiments were

performed using 32 x 65 x 32 spectral modes (streamwise, normal to the wall, and

spanwise, respectively) at Rec = 1800 based on the centerline velocity of the un-

manipulated channel and the channel half-width. Starting with the same initial

field, several different boundary conditions were tried to achieve .,n optimal result.

The final computation uses 128 x 129 x 128 spectral modes at Rec = 3300, from

which most of results presented in PART I are obtained. This particular Reynolds

number was chosen for comparison with the results for the unmanipulated channel

(Kim et al. 1987). For the Reynolds numbers considered here, the streamwise

and spanwise computational periods (Lz and L,) are chosen to be 47r6 and 47r/36,

respectively, where b is the channel half-width.

In this study, x,y, and z denote the streamwise, normal (to the wall), and

spanwise directions, respectively. The velocities are u, v, and w in the x, y, and z

directions, respectively, and are used interchangeably with the subscripted variables

uh, u2, and u3. The subscript w indicates the value at the wall, and the superscript

+ indicates a non-dimensional quantity scaled by the wall variables: for example,

y+ = yur/V, where v is the kinematic viscosity and Ur = (Tw/p)- is the wall-shear

velocity.

In chapter 2, several numerical experiments for active control of turbulent chan-

nel flow are described. Turbulence statistics of the manipulated channel flows are

given in chapter 3. Modified turbulent structures and mechanisms of drag reduc-
tion by active manipulation at the wall are presented in chapter 4, followed by

conclusions and a general discussion in chapter 5.
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CHAPTER 2

ACTIVE CONTROL EXPERIMENTS

Several different control strategies were investigated for the purpose of drag re-

duction: controls with the normal, spanwise and streamwise velocities, control with

selective normal velocity, and control with the sensors at the wall. All numerical ex-

periments were conducted in a fully developed channel flow. Unmanipulated chan-

nel flow provided a base for comparison. In the control experiments, all conditions

were kept the same as in the unammnpulated simulation except for the boundary

conditions through which control strategies were implemented. The skin-friction

reduction was measured in terms of the change in the mean pressure gradient nec-

essary to drive the flow with a fixed mass flow rate. Most of the computations

were carried out with a coarse grid (32 x 65 x 32) at Rec = 1800. The use of

this coarse grid allowed the exploration of many different strategies for optimum

control which would otherwise have required excessive computer resources. To val-

idate the coarse-grid computations, some calculations were performed with a fine

grid (128 x 129 x 128), yielding essentially the same results for low order statistics.

Based on the knowledge that most of the Reynolds stress producing events are

associated with streamwise vortices, we explored several strategies with the aim of

reducing the strength of the streamwise vortices. A summary of results obtained

using different control strategies is presented in the following sections.

2.1 Control with the normal velocity (v-control)

The aim of this study was to examine if we can reduce the wall skin friction

by suppressing the sweep and ejection events. We applied blowing or suction on

the channel walls exactly opposite to the normal coomponent of the velocity at

a prescribed y location (see figure 1). At each inst•ax the boundary condition

for v(x,z) at the wall was prescribed to be -v(x, .&j, where Yd(> 0) is the

distance of the detection point measured from the wall. Thus, when fluid moving

toward the wall (sweep) was detected at Yd, an equally strong blowing velocity was

imposed at the wall to "cancel" the sweep event. Similarly, when fluid moving away

from the wall (ejection) was detected at Yd, an equally strong suction was applied.
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The initial condition for the calculations was an instantaneous velocity field from

the fully developed channel flow. The mass flux through the channel remained

constant since the equation of continuity implies fL, fL. v(x, y, z) dxdz = 0 for

any y. Thus, any skin-friction reduction would be manifested in changes in the
mean pressure gradient necessary to drive the flow with a fixed mass flow rate.

Several computations were performed with the coarse mesh (32 x 65 x 32) for

several different Yd to examine the effect of the location of detection. Using the

same initial velocity field, the calculations were continued with the new boundary

conditions, until a new statistically steady state was obtained or until it became

apparent that the drag would increase substantially.

Figure 2 shows the time histories of the pressure gradients that were required to
drive a fixed mass flow rate for an unmanipulated fully developed channel flow and

for manipulated channel flows. Substantial skin-friction reduction was obtained

(; 25% on each wall) with y" - 10. For other yd+ locations, either the drag was
substantially increased (y" s-s 26) or the reduction was small (y" ; 5). Note that

for the Reynolds number considered, Rec = 1800, the maximum turbulent drag

reduction possible is 63% (74% for Rec = 3300), which would correspond to the

flow becoming laminar.

The efficiency of the process was measured by estimating the ratio of the power
saved ((-dP/dxl, + dP/dxlm) Urn) to the ideal power input (pwv + pv3/2), where

-dP/dxlu and -dP/dxlm are mean pressure gradients for the unmanipulated and

manipulated channels, respectively, and Um is the bulk mean velocity. For the
case of 25% reduction, the ratio was about 30, indicating that the required ideal

power input was negligible. This estimate did not take into account, for example,

the valve losses that would be present in practical applications. Finally, it should

be pointed out that in-phase control, i.e. v(x, z) at the wall was prescribed to be

v(x, z) at Yd, led to a significant drag increase.

We also performed selective control experiments to affect only the strong events.

The out-of-phase boundary condition was applied at the surface only when the

normal velocity at the sensor location Yid exceeded a threshold value, vth. In com-

parison to the 25% reduction for vth = 0, 20% and 15% reductions were obtained

with vth = Vrms and vth = 2Vrms, respectively (figure 3), where Vrms is the root-

mean-square value of the normal velocity at y = Yd. Only 25% and 5%, respectively,

8



of the total surface area were controlled, indicating that most of the reduction was

indeed due to the suppression of the stronger events.

It is known that uniform blowing decreases the skin friction and increases the

strength of the fluctuating quantities, but uniform suction has nearly the opposite

effect. To investigate which part of the control process, i.e., blowing or suction,
is more effective in achieving the skin-friction reduction, several combinations of

blowing/suction strategies were investigated. In the active control simulations,

blowing reduces the strength of the fluctuating quantities as well as the skin friction.

The amount of the skin-friction reduction by active blowing is larger than that
by uniform blowing when the mean value of active blowing is the same as the

magnitude of uniform blowing. Active suction increases the skin friction less than
uniform suction does, but significantly stabilizes the flow.

Other numerical experiments, such as control of a selective bandwidth of the

streamwise and spanwise wave lengths, control with sensor locations at a fixed y+

instead of y, control applied to only a portion of the surface area, and control on
only one channel wall, were conducted. The most significant result among selective
controls based on wave lengths was that up to 10% drag reduction was obtained

by applying the control to only one streamwise Fourier coefficient corresponding to
the largest wave length (k. = 0.5) and all the spanwise waves. Control with sensor

locations at a fixed y+ gave the same skin-friction reduction as control with a sensor

location at a fixed y. In the case of fixed y+ control, the distance of the sensors from
the wall moves in the normal direction, because the control changes the value of the
mean wall-shear velocity. Control was also applied to only a portion of the surface

area. Half and quarter stripped walls were exposed to a control input velocity.

Skin-friction reduction was proportional to the surface area being controlled. In
order to investigate whether the control at one wall affects the skin-friction at the
other wall, control was applied to only one wall. The skin-friction reduction on

the manipulated wall was identical to that obtained on one wall when control was
applied at both walls, and the value of the skin-friction on the unmanipulated wall
was the same as that of the natural channel flow.
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2.2 Control with the spanwise velocity (w-control)

Noting that streamwise vortices lead to strong spanwise velocity as well as normal

velocity, the out-of-phase boundary condition was applied to the spanwise velocity

at the surface (figure 4). Several sensor locations ranging from y" = 5 to 25 were

tested, and the best result was obtained with + 10 yielding about 30% drag

reduction (figure 5), slightly better than the optimum v-control. With yd > 20

the drag was increased. In-phase control of the spanwise velocity gave a significant

increase of drag.

2.3 Combined control (v- and w-control)

The out-of-phase boundary condition was applied to both v and w at the surface,

which corresponds to blowing and suction with different angles to the wall (figure

6). This combined control yielded 30% reduction (figure 7) which is nearly the

same as in the w-control. In some cases, depending upon the initial field, the

combined control was so effective that the flow became laminar. The laminarization

is probably due to the low Reynolds number of the simulation (below the critical

value) and probably would not occur at high Reynolds numbers.

2.4 Control with the streamwise velocity (u-control)

Since the skin friction is directly related to the streamwise velocity near the wall,
we could affect the drag by modifying the streamwise velocity near the wall through

a "u-control" scheme. The out-of-phase u-control with y+ = 10 actually resulted

in an increase, while the in-phase control (that is, the velocity at the surface has
the same sign as that at the sensor location) gave about 10% reduction (figure

8). This is an expected result since the in-phase control reduces Ou'/Oy at the wall
while the out-of-phase control increases the streamwise velocity gradient at the wall.

However, it is rather surprising that we can not do better than 10% reduction with

u-control while up to 30% drag reduction was achieved with transverse velocity

controls.
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2.5 Control with the sensors at the wall

Although the control algorithms described above were successful in reducing the

drag, they are not feasible for practical implementation. Among other things, it is

not practical to place sensors within the flow field. We, therefore, investigated the

possibility of using flow variables at the wall for detection of structures above the

wall.

Probability density functions were used to examine the relationship between the

wall variables and the flow above the wall. Three different wall variables - wall

pressure, streamwise wall-velocity gradient Ou/OyVw, and a quantity derived from

the Taylor series expansion of the normal velocity component about the wall - were

examined to determine to what extent one can reproduce the v-control experiment

by placing sensors only at the wall.

The joint probability density functions of the wall pressure and the normal ve-

locity at different y-locations did not reveal any particular correlations (figure 9),

indicating that wall pressure alone is not an adequate detector of the flow toward

the wall or away from it. One may wonder whether the downstream wall pres-

sure is more appropriate to detect the normal velocity above the wall because the

representative flow pattern around high pressure fluctuations at the wall is that

of upstream inrush of high speed fluid impinging on the wall followed by the ejec-

tion of low speed fluid downstream (Moin, Kim & Choi 1989). However, the joint

probability density function of the wall pressure and the upstream normal velocity

showed only a little improvement in the correlation.

The joint probability density function of v(y+ z 10) and Ou/8ylw is shown in

figure 10. The streamwise velocity derivative at the wall appears to be a better

detector of the events at y+ • 10 than the pressure; in particular, high amplitude

positive values of Ou/8 yJw, are likely to be associated with sweeps. Negative values

of Ou/OyJ,, however, do not provide adequate discrimination between sweeps and

ejections.

The leading term in the Taylor series expansion of v near the wall is

_y 2 02 v

v(y) = 2 ...
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From the continuity equation, one can deduce the equivalent relationship

f/28 a0u a 00 Ww
v(Y) = ++..(2.1)

Our numerical tests have shown that the correlation of the first term in the bracket

with v(y+ - 10) is negligible. The joint probability density of v at y+ = 10 and

gt= Iw (figure 11) indicates a high correlation between the two variables,

suggesting that gw could be a good candidate for the surface detection criterion.

A v-control experiment based on gw yielded only about 6% reduction of drag

(figure 12). For the w-control experiments, we used Ow Itw as the detection criterion,

because it is a first leading order term in the Taylor series expansion of the spanwise

velocity component about the wall, and obtained essentially the same result. These

results were rather disappointing considering that passive control of turbulence with

surface riblets can yield about the same drag reduction.

2.6 Active control based on optimal control theory

The control algorithms described above were successful in reducing the drag.

However, the control strategy used does not have a rigorous theoretical foundation.

In this section we investigate control of turbulent boundary layers by placing sensors

at the wall using optimal control theory.

Abergel & Temam (1990) addressed the problem of minimizing turbulence fluctu-
ations from the point of view of optimal control theory. Following their procedures,

we obtain a first-order optimality condition for the specific cost function J(O),

( Ou) 2  Ow-2 ot fTf

1(~ (9jjjU)21 + (OW)2 ] dzdxdt + ._0 jjjq 0dzdxdt, (2.2)

where T is the control time, a is an arbitrary constant, and 4' is the input normal

velocity at the wall. The subscript w indicates the value at the wall. The quantity

inside the bracket is the square magnitude of the instantaneous shear rates at the
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wall. Note that this quantity does not exactly represent the drag at the wall. More

cost functions including the square of the drag are discussed in appendix A.

The first-order optimality condition minimizing J gives the relation (see ap-

pendix A),

j=i[ I I + R (2.3)

where overbar indicates the optimal pair (iii, Uw = ), and P', is the fluctuating part

of linearized adjoint pressure.

The first term of the control input velocity 0 is exactly the same as in section

2.5 (equation (2.1)), which was obtained from the Taylor series expansion of the

normal velocity component about the wall. A control experiment based on this

function (the first term of of equation (2.3)) yielded about 6% drag reduction. The

inclusion of the linearized adjoint wall pressure (the second term of equation (2.3))

into the control input velocity should give a higher drag reduction. However, the

application of this optimal control algorithm to unsteady three dimensional Navier-

Stokes equations is not practical due to the great complexity of the algorithm; one

has to iteratively solve the linearized adjoint Navier-Stokes equations as well as

the Navier-Stokes equations (Abergel & Temam 1990). The detailed procedure for

obtaining equation (2.3) is described in appendix A.
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CHAPTER 3

TURBULENCE STATISTICS OF MANIPULATED CHANNEL FLOWS

Some key features of the flow fields obtained using v- and w-control schemes were

studied to examine differences between manipulated and unmanipulated channel

flows. Using the optimum Yd location found with the coarse mesh, we performed

computations for detailed analysis of the modified flow fields for the case of y" ,• 10,

using 128 x 129 x 128 spectral modes for Rec = 3300 based on the centerline velocity

of the unmanipulated channel and the channel half-width.

The statistically steady states of the manipulated channel flows were identified

by the linear profile of total shear stress, - uYv + (1/Rec)9ii/Oy, and by a quasi-

periodic behavior of the horizontally averaged wall-shear rate. Statistics reported

here were averaged only over planes parallel to the wall. Therefore, some statistical

fluctuations are expected to be present.

The statistics of the manipulated channel flows were compared to those of the

unmanipulated channel flow (Kim et aL 1987). All velocity and length scales

are normalized by either the unmanipulated wall-shear velocity ur., or the local

wall-shear velocity ur, and the channel half-width b, where ur is u7. for the un-

manipulated channel and urm for the manipulated channel. The wall coordinate
Y+ was obtained using local wall-shear velocity ur unless otherwise indicated. The

Reynolds number based on the local wall-shear velocity Ur and channel half-width

6 is about 155 for the manipulated channel flows, and 180 for the uinmanipulated

channel flow. The Reynolds number based on the bulk mean velocity and the chan-

nel width is constant (Rem s 5600) regardless of the control because the mass flow

rate is kept constant through the computations. In this study, an overbar indicates

an average over x and z, and a prime indicates perturbation from this average.

3.1 Mean properties

The mean-velocity profile normalized by the local wall-shear velocity is shown

in figure 13 for both unmanipulated and manipulated channels. The slope of the

log-law in the manipulated channel remains about the same as that in the unmanip-

ulated channel. However, the intercept of the log-law with u+ -y+ was increased
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from y+ - 10 in the unmanipulated channel to y+ • 15. This upward shift in

the log-law has previously been observed in drag-reduced flows such as large-eddy

breakup devices (Bandyopadhyay 1986 and Nguyen et al. 1987), riblets (Hoosh-
mend et al. 1983, Choi 1989, and PART III of the present study), and polymers

(Lumley 1973 and Virk 1975).

The shift in the log-law may be considered the result of the increase of the viscous
sublayer thickness. From the Taylor series expansion,

&f 1 92fij y2 % ~3).(31fl(y)=O1. +. (3.1)

Using the streamwise momentum equation and Ou9Ox - Ou/,9z = 0 at the wall,

equation (3.1) can be recast in terms of wall variables as follows

- 1 [ + Ou'1 ]) (3.2)
MRe, [2 p dx V~~

where u+ = Ui/ur, Y+ = UTY/Zi, Re, = ur 6 /v, and -dP/dx(> 0) is the mean

pressure gradient. In the case of the unmanipulated channel flow (Vw = 0), the

departure from the law of the wall (u+ = Y+) is mainly due to the mean pressure

gradient. As shown in figure 10, the correlation between v. (= -v at y+ -, 10)

and Ou/&yjw is relatively weak; therefore, the magnitude of vwau'/cyjw is much
smaller than that of the mean pressure gradient in the case of v-control. In the

case of w-control (V. = 0), vwOul/9Y1yw = 0. Thus, again the departure from the

law of the wall is mainly due to the mean pressure gradient. The reduction of the

coefficient of y+2 term is accompanied by the drag (or mean pressure gradient)

reduction as a result of the control. Figure 14 shows the limiting behaviors of the

mean velocities. The viscous sublayer thickness y,+, in which the law of the wall,
u+//+ ;t: 1, is satisfied, is increased by the control. For the unmanipulated channel,

y,+ se 5; for the manipulated channels, y1+ :, 10.

Other mean properties, such as the skin-friction coefficient, displacement thick-
ness, and momentum thickness, are shown in table 1. Comparison of these proper-

ties with experimental data is documented in Kim et al. (1987) for the unmanipu-

lated channel flow. A reduction in the skin-friction coefficient Cj in the controlled
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Case Rem Rec 0 U _ _ _ CJ t e/_ alb
no control 5600 3300 180 0.064 1.16 8.37 x 10-3 0.135 0.083
v-control 5600 3300 158 0.057 1.16 6.40 x 10-3 0.137 0.079
w-control 1 5600 3300 154 0.055 1.16 6.09 x 10-3 0.140 0.080

t The bulk mean velocity is defined as Um= fl 1 ii d(

$ Cf =Trw/PUMn.

Table 1. Mean flow variables of the manipulated and ,,nmanipulated channel flows.

cases is evident from table 1. The displacement thickness 6* is slightly increased,

while the momentum thickness 0 is slightly decreased. For the case of boundary

layer flows, the momentum thickness is directly related to the skin friction at the

wall, so that a decrease of the momentum thickness correlates with a reduction in

skin-friction (White 1974).

3.2 Turbulence intensities

Turbulence intensities above the manipulated channel walls are shown in figure

15, and they are compared with those above the unmanipulated wall (Kim et al.

1987). Turbulence intensities are significantly reduced by the control throughout

the channel except very near the wall. The increase of vrms or wrmig very near the

wall is due to the input control. The changes of turbulence intensities with the

active control schemes are in sharp contrast to the results of Kuhn et al. (1984)

using a compliant surface and Choi (1989) using a longitudinal riblet, in which

only local modification in the near-wall region was observed. Normalization of

the turbulence intensities and the distance from the wall with the local wall-shear

velocity ur is shown in figure 15 (b). The major difference among the data sets is

the apparent outward shift of the controlled data, suggesting a displaced virtual

origin of the boundary layer and a thickened sublayer. The value of the outward

shift of the turbulence intensities is approximately 5 wall units, which coincides

with the increased viscous sublayer thickness. The structural change of turbulence

near the wall will be discussed in detail in chapter 4.

The production and dissipation of the turbulent kinetic energy also show the

same trend, indicating that the overall turbulence activity is weakened by the con-

trol (figure 16). The locations of the maximum production are at y+ ; 12 for the
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unmanipulated channel and 17 for the manipulated channels, which also correspond

to the locations of the maximum streamwise velocity fluctuation.

Figure 17 shows the profile of root-mean-square pressure. The pressure fluctua-

tions are substantially reduced throughout the channel with both control schemes.

The reduction of the surface-pressure fluctuation is especially notable since this

implies that one can also reduce the structure-generated noise within the turbulent

boundary layer simultaneously with the skin friction.

3.3 Reynolds shear stress and quadrant analysis

The Reynolds shear stress, -u'vl, and the correlation coefficient are shown in

figures 18 and 19, respectively. Also shown in figure 18 (a) is the total shear stress,

-u-v 1 + (1/Reru)Ofi/Oy, where Reru = ruTb/v and u1ru is the wall-shear velocity

for the unmanipulated channel flow (table 1). In the fully developed channel flow

considered here, this profile should be a straight line when the flow reaches an

equilibrium state. The computed result clearly indicates that this is the case. The

slope of the total shear stress is reduced by the control schemes. Also, there is a

significant reduction in the Reynolds shear stress throughout the channel. There

is a noticeable region around y+ t 5 in which Reynolds shear stress is nearly zero.

Figure 19 illustrates that in the v-control a significant positive correlation between

u/ and vt occurs very near the wall, and either negative (v-control) or zero (w-

control) correlation occurs near y+ : 5. The highly positive correlation very near

the wall in the v-control is owing to the absence of first- and third- quadrant events

(figure 20).

The quadrant analysis of the Reynolds shear stress provides detailed information

on the contribution to the total turbulence production from various events occurring

in the flow (Kim et al. 1987). The second quadrant (u' < 0 and v' > 0; ejection)

and fourth quadrant (u' > 0 and v' < 0; sweep) events contribute to the positive

Reynolds shear stress (positive production), and the first quadrant (u' > 0 and

VI > 0) and third quadrant (u' < 0 and v' < 0) events contribute to the negative

Reynolds shear stress (negative production).

The contribution to the Reynolds shear stress from each quadrant normalized by

the wall-shear velocity or the local mean Reynolds shear stress is shown in figure

20. Sums of the values at each position y from the four quadrants in figures 20 (a)
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and (b) are equal to the local mean Reynolds shear stress and one, respectively.

In the case of unmanipulated channel, the ejection event is dominant away from

the wall, and the sweep event is dominant in the wall region; at y+ -, 12, these

contributions are about the same. In the manipulated channels, the Reynolds shear

stress from the sweep and ejection events are significantly reduced by both controls

(figure 20 (a)). The fractional contribution from each quadrant event shows that

there is no noticeable difference above y+ ; 20 except for an outward shift of

the data; at y+ ; 17 the contributions from the ejection and sweep events are

about the same (figure 20 (b)). That is, the active control schemes do not alter

the structure of the outer-wall turbulence, but simply attenuate the strength of the

turbulence. The fourth quadrant events are most dominant near the wall regardless

of the control. A sharp increase in the normalized Reynolds shear stress from each

quadrant near y+ ; 5 and the centerline in figure 20 (b) is owing to the negligible

mean Reynolds shear stress at those locations. In the case of v-control, the first-

and third- quadrant events are negligible below y+ ; 1, whereas they are still

significant in the case of w-control.

3.4 Vorticity

Vorticity fluctuations are shown in figure 21. All three vorticity fluctuations

are substantially reduced throughout the channel with both control schemes. The

vorticity fluctuations in wall coordinates are shown in figure 21 (b). The major

difference among the data sets is the apparent outward shift of the controlled data,

as was discussed in section 3.2. w-control increases the streamwise vorticity fluctu-

ation at the wall while v-control reduces the root-mean-square value as compared

with the unmanipulated channel case.

Each component of the vorticity consists of two terms, i.e.

= w Ov Ou Ow W, _v Ou'

The root-mean-square value of each term of the streamwise, normal and spanwise

components is shown in figures 22 - 24, respectively. Regardless of the control

schemes, near the wall, wo, wy and w' are mostly dominated by Ow/&y, au/Oz
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and O&'/ay, respectively. The contribution of the normal velocity gradient to the

magnitude of the streamwise and spanwise vorticities is negligible near the wall.

Since the streamwise vorticity fluctuations are dominated by Ow/Oy, we exper-

imented with a control scheme which altered the wall spanwise velocity in order
to make w, = Ow/9y = 0 at the wall. This boundary condition is equivalent to

using an in-phase control of the spanwise velocity, matching the sensor location at

the grid point nearest to the wall. A significant increase of the skin friction was
obtained, and the vorticity fluctuations as well as the velocity fluctuations were

increased substantially.

Despite the comparable drag reduction by both control schemes, w-control in-
creases the streamwise vorticity fluctuation at the wall, while v-control reduces the

root-mean-square value compared to the unmanipulated channel case (figure 21

(a)). Furthermore, the skin friction is significantly increased with the boundary

condition wzlw = 0. Therefore, one may conclude that the secondary streamwise
vorticity at the wall does not contribute to the dynamics of near-wall turbulence

and may be nothing but the kinematical result of the presence of the primary
streamwise vortex due to the no-slip boundary condition. However, this is a rather

puzzling deduction because Jimenez & Moin (1991) have demonstrated significant

interactions between the primary and secondary vortices. Our control schemes
seem to reduce or alter the interaction between the primary vortex and secondary

streamwise vorticity at the wall (chapter 4).

3.5 Two-point correlation functions and spectra

Figure 25 shows the one-dimensional spectra of the wall-shear rate fluctuations,
9us'/Oy, for both control cases. Differences in the spectra of o- and w-coittrol cases

are noticeable. In the case of v-control, the power is significantly reduced at the
small streamwise wavenumbers, whereas there is little reduction in the moder-

ate and large streamnwise wavenumber region. In the case of w-control, however,

the power is reduced at all the streamwise wavenumbers. In the small spanwise
wavenumber region, the spectra show the reduction for both control schemes. Note

that the power reduction at the smallest spanwise wavenumber by the v-control

scheme is larger than that by the w-control scheme, as opposed to that for the
smallest streamwise wavenumber. In the case of v-control, there is a noticeable
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increase in power at the large spanwise wavenumbers, indicating that the char-

acteristic eddy size becomes smaller in the lateral direction. This change does

not occur in the w-control; the power is significantly reduced at all the spanwise

wavenumbers.

Wall pressure spectra are shown in figure 26. Power is reduced at all wavenum-

bers except for a negligible increase at large spanwise wavenumbers and a small

increase in smallest streamwise wavenumber (v-control) which could be due to an

inadequate statistical sample.

Figure 27 shows the energy spectra in the manipulated and unimanipulated chan-

nels. At y+ • 0.2, the energy spectrum of the streamwise velocity shows the same

behavior as discussed for the wall-shear rate. The significant increase of energy in

the normal and spanwise velocities at this location is a result of input wall-velocity.

However, the energy of each velocity component is reduced at all wavenumbers

above y+ s 5 (figure 27 (b)).

Two-point correlations of the velocity are shown in figure 28 for both control

cases, and are compared with those of the uncontrolled channel flow. The span-

wise two-point correlations clearly indicate that the velocity fields are modified in

different ways. In the unmanipulated channel, local minimum locations of span-

wise two-point correlations of the streamwise and spanwise velocities are nearly

identical (4 Imin • 50) below y+ - 10, while r+4min - 25 for the normal veloc-
ity component (Kim et al. 1987). In both controlled flows, below y+ : 5, the

streamwise microscale, which is defined by the curvature of the streamwise two-

point correlation of u' at r+ = 0, is significantly reduced, as compared to that in
the uncontrolled flow, indicating that the streaky structure has been annihilated

in that region in the manipulated channels. In the case of v-control, the two-point

correlation of the streamwise velocity at y+ - 0.2 is similar to that of the normal

velocity at that location; the structure of the streamwise velocity very near the wall

is clearly affected by the action of blowing and suction. Near y+ m 5, the qualita-

tive behavior of two-point correlation of u' in the manipulated channels becomes

similar to that in the unmanipulated channel.

Two-point correlations of the wall-shear rate and wall pressure are shown in

figure 29. The streamwise integral scale of the wall shear-rate fluctuation is sig-

nificantly reduced by the controls. The two-point correlation of the wall pressure,
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however, is changed very little by the control schemes, indicating that the scales
of turbulence structure above the viscous sublayer, which strongly influence the

wall-pressure fluctuations (Kim 1989), havw not been affected much by the con-

trol action, even though the strength of the turbulence structure has been reduced

significantly throughout the channel (figures 15 and 17).

3.6 Pressure-strain correlation tensor

The profiles of the diagonal elements of the pressure-strain correlation tensor

Ou'. Ou'

are shown in figure 30. These terms govern the exchange of energy among the three
components of turbulent kinetic energy (Hinze 1975). The negative sign for 0,

(no summation) indicates loss, or transfer of energy from u, 2 to other components,
whereas a positive sign denotes energy gain. In the case of the unmanipulated

channel, except in the vicinity of the wall, the streamwise velocity fluctuations

transfer energy to the cross-stream velocity components. However, very near the

wall, there is a large transfer of energy from the normal component of turbulence

intensity to the streamwise and spanwise velocity components. This phenomenon

is referred as the splatting or impingement effect (Moin & Kim 1982).

In the manipulated channels, the pressure-strain correlations are changed, es-

pecially very near the wall (y+ < 5). As a consequence of supplying the control
velocity at the wall, we can anticipate that energy is transferred from the input
wall-velocity component to other velocity components very near the wall. That is,

energy from the normal component is transferred to the streamwise and spanwise

components in the v-control, while energy from the spanwise component is trans-

ferred to the streamwise and normal components in the w-control. The shape of
the pressure-strain terms is little changed except for an apparent thickening of the

layer. However, the rate of energy transfer from the normal velocity component to

the spanwise component is reduced, indicating that the splatting is considerably

weakened by both controls.
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3.7 Skewness and flatness factors

The skewness and flatness factors of uý and J are shown in figure 31. The

skewness and flatness factors of all quantities axe significantly diffei ent from the

those for a Gaussian distribution (0 and 3, respectively). The skewness and flatness

of the pressure are little changed near the wall. The skewness of u' in the controlled

channel is changed only near the wall: with v-control, the streamwise velocity is

highly positively-skewed in the vicinity of the wall with abrupt reduction near
y+ - 5 and follows that of the unmanipulated channel flow further from the wall.

However, with w-control, the skewness of ut is only gradually reduced near y+ ; 5.

The skewness of the normal velocity in the manipulated channels is rather dras-

tically changed. In both control cases, the skewnesses of b --. I and v' are positive

in the region 3 < y+ < 12. However, the skewnesses of u' and v' in the unmanip-

ulated channel axe positive and negative in this region, respectively. Consideril.-

that the Reynolds shear-stress-producing events for y+ < 12 are from the fourth

quadrant (sweep) events in the unmanipulated channel, the control schemes appar-
ently prevent the strong sweep events in this region. The skewness factor of the

Reynolds shear stress is shown in figure 32. Once again, the effect of controls on

the flow structure is limited to the near wall region.

The flatness of u' is significantly increased very near the wall for both controls,

while the flati s of v' is considerably reduced. The flatness of v' near y+ z 5

shows that the intermittency of the normal velocity in this region is significantly

reduced owing to the control. The flatness factors of the Reynolds shear stress in
the controlled channels show a highly intermittent character near the wall, which

is also seen in the unmanipulated channel.

Figure 33 shows the probability density functions of the wall-shear rate and

wall-pressure fluctuations. There is little change in wall pressure data, while the

wall-shear rate shows a significant change owing to the controls. The probability

density functions of the wall-shear rate show significant reductions in the positive

tail and amplifications in the negative tail with both controls.
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CHAPTER 4

TURBULENCE STRUCTURE OF MANIPULATED CHANNEL

FLOWS AND DRAG REDUCTION MECHANISMS

As mentioned in chapter 3, the turbulence statistics in the manipulated channels

are substantially different from those in the unmanipulated channel. A relatively

small amount of either blowing and suction or spanwise velocity at the surface

appreciably changes turbulence statistics throughout the channel. Differences be-

tween two-point correlations and spectra of the v- and w-controlled channels reveal

that, despite comparable drag reductions, the structures are manipulated in differ-

ent fashions. Also, the control strategies presented in chapter 3 are not capable of

eliminating all of the essential features of turbulent structures, but they are able

to weaken most structures substantially, thus yielding a 25% drag reduction. As-

suming that the best resulting velocity field is laminar, the maximum possible drag

reduction at Rec = 3300 is 74%. In this chapter, we focus on turbulence structures

in the manipulated channels by examining instantaneous flow fields and study drag

reduction mechanisms caused by active controls.

4.1 Turbulence structure of manipulated channel flows

Contour plots of the streamwise velocity of both manipulated channel flows in

the wall region are shown in figure 34, and are compared with those of the unmanip-

ulated channel flow. There is no streaky structure below y+ - 5 in the manipulated

channels, and at y+ = 5 and 10 the mean streak spacing appears to be larger than

in the unmanipulated channel. Also, the active control schemes significantly re-

duce the magnitude of the streamwise velocity in the wall region. Examples of the

input control velocities at the wall, i.e. the normal velocity for v-control and the

spanwise velocity for w-control, are shown in figure 35. In the case of v-control, the

contours of the streamwise velocity near the wall are quite similar to those of the

wall-normal velocity. This observation was confirmed statistically with two-point

correlations in section 3.5 (figure 28).
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The mean streak spacing can be obtained from the two-point correlation of the

streamwise velocity. The mean spacing between streaks is roughly twice of the sep-

aration distance at which the correlation of the streamwise velocity is negative and

reaches a minimum. Figure 36 shows the mean streak spacings of the manipulated

and unmanipulated channel flows. Due to the lack of streaky structures very near

the wall in the manipulated channels, streak spacings are not shown for that re-

gion. For y+ < 10, the mean streak spacing is clearly increased in the manipulated

channels, and it has nearly the same value above y+ ; 10 as in the unmanipulated

channel. Note that we have used the local wall-shear velocity Ur when the mean

streak spacing is calculated in wall units. Hence the physical dimension of the

mean streak spacing in the manipulated channels is actually larger than that in the

unmanipulated channel even above y+ ; 10.

Contours of instantaneous streamwise vorticity in a (y, z) plane in the manip-

ulated and unmanipulated channels are shown in figure 37. The reduction in the

intensity of the streamwise vorticity near the wall is apparent. Figure 38 shows
the contours of instantaneous spanwise vorticity in a (y, z) plane. The intensity is,

again, significantly reduced. The high skin-friction regions near the unmanipulated

wall do not appear near the manipulated walls. Instead, the high skin-friction re-

gions are shifted slightly to the interior (y+ p 5) of the manipulated channel by

action of the controls. This is one important drag reduction mechanism and will

be described in detail in the following section.

4.2 Drag reduction mechanisms of active controls

In this section, we focus on investigating the dynamics and underlying mecha-

nisms that lead to the reduction in drag and the strength of the large-scale struc-

tures. We employ two approaches as outlined below.

In general, it is rather difficult to study the dynamics associated with a tur-

bulent flow. The main reasons for this difficulty are twofold. First, at any given
instant, the flow is crowded with several structures at broad scales and associ-

ated complex interactions. Second, the computational cost required to follow the

temporal evolution of a given structure over a long period is prohibitive. The ap-

proach in the present study is based on the work of Jim~nez & Moin (1991), which

demonstrated that the essential dynamics associated with the streamwise vortical
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structures present in the wall region can be reproduced in what they referred to

as the "minimal channel" flow. In their study, they isolated one or two stream-

wise vortices by choosing a periodic computational domain such that it could only

accommodate these minimal set of structures. It is a relatively easy task then to

follow the evolution of a single vortical structure in this manner. Of course, some

interactions between different structures are absent in the minimal channel flow

(Jimenez & Moin 1991). However, since the near-wall turbulence statistics were

reproduced accurately, Jimenez & Moin implied that such interactions may not be

essential to turbulence dynamics in the wall region. Computed flow fields in the

minimal channel with both v- and w-control strategies implemented are analyzed

below to investigate the dynamics associated with a streamwise vortex.

In the second approach, we examine an even simpler model problem. To gain

further insight on how the surface boundary condition interacts with a streamwise

vortex, we performed numerical simulations of an isolated vortex dipole interacting

with a wall, with and without control manipulations. In the absence of background

turbulence, one can study the dynamics of the vortex interaction with the wall in

a straightforward manner.

4.2.1 Minimal channel flow

The database of Jim6nez & Moin (1991) is used as the base flow for control. The

Reynolds number based on the laminar centerline velocity U1 and channel half-

width 6 is 2000. The computational box for this particular Reynolds number is

?r6, 26 and 0.356 in x, y and z directions, respectively. At this particular Reynolds

number, the flow is turbulent at only one wall. Jim6nez & Moin (1991) chose

this Reynolds number in order to study the structure of the vorticity field because

flow features are "cleaner" at low Reynolds numbers, but similar features are also

observed at higher Reynolds numbers where both walls are turbulent.

Figure 39 (a) shows the time history of the horizontally averaged wall-shear rate

from Ult/6 = 0 to 120. In this period, there are two intermittency cycles according

to Jim~nez & Moin (1991). In the intermittency cycle, all of the characteristic

turbulent intensities as well as the wall-shear rate vary strongly. The velocity

fields at Ujt/6 = 0 and 23.125 were used as initial flows to apply both control

schemes. The latter flow field was chosen during the turbulence activation period.
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For convenience, we call SEQ1 the evolution of the flow fields with an initial flow of

U(t/6 = 0 and SEQ2 the evolution of the flow fields with an initial flow of Ujt/6 =

23.125. The modified wall-shear rates owing to the controls are shown in figure

39 (b). The wall-shear rates are significantly reduced in both SEQ1 and SEQ2.

Intensities of the velocity and vorticity fluctuations are also considerably reduced.

The controlled flow fields (SEQ1 and SEQ2) were stored in time increments of
Uit/6 = 5 (u2t/v k 24) and visually analyzed and compared to the corresponding

unmanipulated sequences.

Regions of high skin friction are closely related to the location and strength of

streamnwise vortices near the wall. The sweep motion due to strong streamwise

vortices creates high skin-friction regions on the wall. Most of the vorticity in the

wall region is spanwise owing to mean shear. Further from the wall where the large

streamwise vortices are located (y+ = 15 - 40), this is no longer true, and the three

vorticity components have comparable magnitudes. Therefore, possible origins of

the strong streamwise vortices are the tilting of the wz vortex lines by spanwise

variation of the streamwise velocity (wzOu/Oz) and tilting of the normal vorticity

by the prevailing shear (wyOu/Oy).

Time sequences of the evolution of the wall-vorticity layer in the manipulated

and unmanipulated channels (SEQ1) are shown in figure 40. Each frame in the

time sequence shows an instantaneous view of the position of the sheet as it ap-

proaches the active peak in the intermittency cycle shown in figure 39. The surface

is marked by individual transverse vortex traces initiated at y+ ; 7.5 in a relatively

undisturbed part of the layer. In the unmanipulated channel, the lifting of the layer

away from the wall over the low-velocity streak is evident, as is the waviness of the

streak itself. The lifting process is mainly due to a strong streamwise vortex above

tLe wall (Jim6nez & Moin 1991). A short time after applying control, the lifting

of the vortex line essentially disappears. The vortex lines modified by the active

control schemes are mainly composed of the spanwise vorticity near the wall, and

the absence of tilting and lifting of the spanwise vorticity prevents new formation

of the streamwise vorticity above the wall. Vortex traces initiated at y+ ; 5 and

10 followed the same trend.

The time history of the skin friction on the manipulated walls shows that the

skin friction decreases as soon as the control is applied to the flow even though
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the primary streaniwise vortex above the wall is not immediately affected. There-

fore, there must be another drag reduction mechanism besides the reduction of the

strength of the streamwise vortex above the wall. In order to investigate this effect

more clearly, we applied both controls at Uit/1 = 23.125, when the skin friction is

increasing very rapidly on the ,nmanipulated wall (figure 39). An abrupt decrease

of the wall-shear rate was found with both control schemes.

Figure 41 shows cross-flow velocity vectors (v, w) and contours of the spanwise

vorticity in a (y, z) plane at Ujt/6 = 30, when there is a significant reduction of

the skin friction in the manipulated cases (SEQ2). The figure shows that turbulent

structures remain essentially unchanged except very near the wall. The high skin-

friction regions on the wall are lifted to the interior of the channel (y+ g, 5) by the

control schemes. The sweep motion due to strong streamnwise vortices is directly

deterred by active controls. A schematic diagram of the drag reduction mechanism

is shown in figure 42. Note that, in the case of w-control, a wall-normal velocity is

induced very near the wall by the spanwise velocity distribution at the wall; from

the continuity equation at the wall, Ov/Oy = -O /Oz # 0, leading to higher values

of v near the wall.

4.2.2 An isolated vortex interacting with a wall

Although the minimal flow unit is useful to trace turbulent structures in time,

the flow in the minimal channel is still too complicated to easily isolate the effect

of the control schemes on the primary streamwise vortex above the wall. To gain

further insight on how the control affects the dynamics of the streamwise vortices,

a two-dimensional vortex pair interacting with a wall with and without boundary

manipulation was simulated. Of course, the results described below represent a

highly idealized situation, because there is no mechanism of stretching or tilting

of vortices in this flow. The strength of the primary vortex pair in this simulation

continuously decreases owing to viscous diffusion.

The Reynolds number of the initial vortex dipole is Rer = rv = 1800, where

r is the circulation of the vortex, and v is the kinematic viscosity. The size of the

computational box is chosen to be 2ir6 and 26 in z and y directions, respectively,

where 6 is the channel half-width. The computations are performed using 128 x 65

spectral modes (spanwise and normal to the wall). The vortex dipole is initially

70



located at the center of the channel. Due to the self-induced motion of the vortex

dipole, it approaches to the lower channel wall (y = -6). The sensor location for

the control was chosen to be y = -0.836. Two other sensor locations (y = -0.94b

and -0.676) gave similar results.

Figure 43 shows the time sequences of the vorticity in the manipulated and

unmanipulated channels. In the umnnanipulated channel, the vortex behavior is

similar to Orlandi's results (1990). A vortex near a no-slip wall induces secondary

vorticity of opposite sign at the wall and carries it up to generate a new free vortex

(figure 43 (a)). The lifted secondary vortices inhibit the separation of the primary

vortices. In the v-control scheme shown in figure 43 (b), the vortices separate.

Here, the lifting of the secondary vorticity at the wall is clearly prohibited, and

the y-location of the center of the primary vortex is nearly constant owing to the

absence of the lifted secondary vortices. From the sequence of the v-controlled flow,

it may be suggested that the v-control scheme changes the interaction between the

primary vortex and the secondary vorticity by preventing the lifting process.

On the other hand, the vortex motion in the w-controlled channel is quite similar

to that in the unmanipulated channel (figure 43 (c)). There is clear lifting of the

secondary vorticity. However, the difference is that stronger secondary vorticities

are created at the wall by the w-control scheme. Hence, the primary vortex is lifted

further into the interior of the channel by this lifted stronger secondary vortices, so

that the sweep effect near the wall is reduced. The vortex rebounding time (Orlandi

1990) is also increased by the stronger secondary vortices.

The maximum value of the vorticity and the circulation of the primary vortices

are not changed by the control actions, indicating that the active control schemes

applied do not reduce the strength of the primary vortices, but change their relative

locations and interactions with the wall.

In order to investigate the effect of the streamwise vortex dipole on the mean

skin friction on the wall, we performed two-dimensional numerical simulations in

which a parabolic streamwise velocity was superimposed on the streamwise vortex

dipole. Skin-friction reduction was found using both control schemes.
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FIGURE 34. For caption see the following page.
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FIGURE 34. Contours of strearnwise velocity fluctuations in an (x, z) plane. (a) At

y+ Z 1; (b) at y+ • 5; (c) at y+ t 10. The contour levels normalized by u,. range

(a) from -0.8 to 3 by increments of 0.2; (b) from -2.8 to 7 by increments of 0.4;
c) from -5 to 7 by increments of 0.5. Negative contours are dotted.
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(b) X

FIGURE 35. Contours of control-input velocities at the wall. (a) Normal velocity
fluctuations (v-control); (b) spanwise velocity fluctuations (w-control). The contour
levels normalized by UrT range (a) from -1 to 1 by increments of 0.1; (b) from -2
to 2 by increments of 0.2. Negative contours are dotted.
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FIGURE 37. Contours of streamwise vorticity fluctuations in a cross-flow plane. The
contour levels range from wz 6 /ur- = -120 to 120 by increments of 10. Negative
contours are dotted. The plot domain extends from the lower wall to the upper
wall in y.
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FIGURE 39. Time history of the horizontally averaged wall-shear rate at the lower
wall for minimal channel flow: (a) - , no contro; (b) - , no control; , v-
control (SEQ1); ........ , w-control (SEQ 1); --- , v-control (SEQ2); --- , w-control
(SEQ2). (O8i/Oy)w 6/U1 = 2 corresponds to fully developed laminar channel flow.
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FIGURE 41. For caption see the following page.
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FIGu" 41. For caption see the following page.
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(c)
FiGURE. 41. Velocity vector (V, W) and contours of the spanwise vorticity in a (y, z)
plane: (a) no control; (b) v-control; (c) w-control. The contour levels range from
wzb/Ul = -10 to 2 by increments of 0.5. Positive contours axe dotted. 0 denotes
the location of the maximum spanwise vorticity. The plot domain extends from the
lower wall to the centerline.
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FIGURE 43. For caption see the following page.

87



• " :• ,(hIM L...

JL "*..

-A..

(b)

FIGURE 43. For capLion see the following page.
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FiGURE 43. Time sequence of the evolution of a vortex dipole from rt/62 = 1 to 10
with increments of 1: (a) no control; (b) v-control; (c) w-control. The flow fields
from rt/62 = 0 to 1 are identical regardless of boundary manipulations. Time

increases from top to bottom. The contour levels of the vorticity (wb 2 /I") range
from -15 to 15 by increments of 2. Negative contours are dotted.
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CHAPTER 5

CONCLUSIONS AND DISCUSSIONS

Active control strategies were investigated for the purpose of drag reduction

using direct numerical simulation of turbulent channel flow. These included controls

with the normal, spanwise and streamwise velocities, control with selective normal

velocity, and control with the sensors at the wall. The skin-friction reduction was

measured in terms of the change in the mean pressure gradient necessary to drive

the flow with a fixed mass flow rate. The algorithm was based on the input velocity

at the wall being proportional to the instantaneous velocity at a location near the

wall. For instance, in the case of the normal-velocity control, the blowing or suction

velocity at the wall was exactly opposite to the normal component of the velocity

at a prescribed y-location, Yd. The optimum location for matching the velocity was

y" s, 10. Approximately 20 - 30% reduction in the skin friction was achieved by

controlling either the normal or the spanwise velocity at the wall.

In selective control experiments which affected only the strong events, the input

control velocity was applied at the surface only when the normal velocity at the

sensor location Yd exceeded a threshold value, vth. In comparison to the 25%

reduction for vth = 0, 20% and 15% reductions were obtained with vth = vrMs

and vth = 2 vrma, respectively, where vrmr is the root-mean-square value of the

normal velocity at y = Yd. Only 25% and 5%, respectively, of the total surface area

were controlled, indicating that most of the drag reduction was indeed due to the

suppression of the stronger events.

Control of turbulent boundary layers by placing sensors only at the wall was

investigated for practical implementation. It was found that g. = 9/Oz (o&w/4y)!,

which is a leading term in the Taylor series expansion of v near the wall, was the

best surface detection criterion. A control based on this variable yielded about 6%

drag reduction. Application of optimal control theory to turbulent channel flow

resulted in an expression for the optimal input velocity which contained gw as well

as the linearized adjoint wall pressure fluctuations. However, the implementation

of this control algorithm was impractical.
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The statistics of the manipulated channel flows were compared to those of the

unmanipulated channel flow. The mean velocity as well as turbulent intensities

were altered by the boundary modification. An upward shift in the log law and an

increase of the viscous sublayer thickness were obtained in the manipulated chan-

nels, which had been observed previously in other drag-reduced flows. The major

difference among the data sets was the apparent outward shift of the controlled

data, suggesting a displaced virtual origin of the boundary layer and a thickened

sublayer. The value of the outward shift of flow variables was approximately 5 wall

units, which coincided with the increased viscous sublayer thickness.

Velocity, pressure, and vorticity fluctuations as well as the Reynolds shear stress

were significantly reduced throughout the channel. This change of turbulence in-

tensity with the active control schemes was in sharp contrast to the result of using

a compliant surface or longitudinal riblets, in which only local modifications in

the near-wall region were observed. Instantaneous flow fields showed that streaky

structures below y+ ; 5 were clearly diminished by the active control, and the

spacing of the streaky structure above y+ ; 5 was increased in the manipulated

channels.

Drag reduction mechanisms were studied with two different approaches: a mini-

mal channel flow and an isolated vortex pair interacting with a wall. Time sequences

of the flow fields in the minimal channel showed that there were two essential drag

reduction mechanisms. Firstly, within a short time after control is applied, drag

is reduced mainly by deterring the sweep motion without modifying the primary

streamwise vortices above the wall. Consequently, the high skin-friction regions on

the wall are lifted to the interior of the channel (y+ - 5) by the control schemes.

Secondly, the active control changed the evolution of the wall vorticity layer by sta-

bilizing and preventing lifting of thc spanwise vorticity near the wall. The absence

of this lifting process suppresses a possible source of new streamwise vortices above

the wall.

In order to isolate the effect of the control schemes on the dynamics of a primary

streamwise vortex above the wall, a two-dimensional vortex dipole interacting with

a wall was simulated with and without boundary manipulation. The effects of the

normal and spanwise velocities at the wall on the primary streamwise vortex pair

were significantly different. The control scheme with the normal velocity altered

the mutual interaction between the primary vortex pair and the secondary vorticity
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by preventing the lifting of the secondary vorticity. On the other hand, the vortex

motion with the spanwise-velocity control was quite similar to that in the unma-

nipulated channel. There was clear lifting of the secondary vorticity. However, the

stronger secondary vorticity created by the spanwise-velocity control changed the

location of the primary vortex pair as well as the flow time scale.
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PART II

Feedback Control for Unsteady Flow and Its
Application to the Stochastic Burgers Equation
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CHAPTER 1

INTRODUCTION

Many strategies of controlling turbulent flows have been investigated to achieve

different goals such as drag reduction and heat and mass transfer augmentation.

There are, in general, many ways of reducing the skin-friction by passive means:

riblets, large eddy break-up (LEBU) devices, compliant walls, polymer addition, etc

(for a succinct summary of this subject, see Bushnell & McGinley 1989). Among

them, surface mounted longitudinal grooves in turbulent boundary layers are most

successful in reducing net drag, in spite of a substantial increase in the surface area

(see e.g. Bechert & Bartenwerfer 1989, Walsh 1983 and PART III of the present

study).

In PART I of the present study, we used the direct numerical simulation tech-

nique to explore concepts for active control of turbulent channel flow with the goal

of drag reduction using selective blowing and suction at the wall. The drag re-

duction (about 20%) was accompanied by significant reductions in the intensity

of the wall-layer structures and reductions in the magnitude of Reynolds stresses

throughout the flow. Experimental efforts using active (or feedback) control devices

to control turbulence are described in Bushnell & McGinley (1989).

When certain aspects of the physics of a problem are well-known, such as the ex-

istence of organized patterns, one can devise a scheme to manipulate these patterns,

or at least impede or amplify their formation by preassigned kinematic modifica-
tions. However, when the physics of a phenomenon is not known or is very compli-

cated, it is tempting to appeal to the more systematic but less intuitive methods

of control theory. This is the objective of this work: to provide a framework for

systematic control of turbulent flows.

The issue of minimizing turbulence in an evolutionary Navier-Stokes flow was

addressed from the point of view of optimal control by Abergel and Temam (1990).

They derived theoretical results for various physical situations. However, the appli-

cation of their optimal control algorithm to the unsteady three-dimensional Navier-

Stokes equations is not practical due to the great complexity of the algorithm.
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In fact the problem of controlling turbulent flows using control theory is consider-

ably difficult. We encounter here two major difficulties which have been addressed

by two different segments of the scientific community: the control of nonlinear sys-

tems studied mostly in the control community, and the problems related to the

resolution of two or three dimensional flows, in the presence of turbulence and

complicated geometries, studied by the fluid mechanics community.

While the control of linear systems is fairly well understood, the control of non-

linear systems remains the subject of active research at this time, even in finite

and small dimensions. For such applications as the control of flight or the control

of industrial processes, the objective has been to improve the control processes

based on a simplified linear description of the process. The basic theoretical as well

as practical issue is the determination of efficient nonlinear feedback controllers.

However, as is well known in the fluid mechanics community, nonlinearity leads to

complex and often chaotic behaviors and linearization of the governing equations

produces approximations that are only valid for a limited time.

Nonlinear control theory has been studied by Lions (1971), in his early work on

distributed systems, i.e. in infinite dimension; he addresses the question of existence

of an optimal control and the derivation of necessary conditions. Nonlinear control

theory has been addressed more recently by numerous authors from the point of

view of H' theory; see, among others, Foias & Tannenbaum (1989) and for the

infinite dimensional case Barbu (1992). Feedbacks of nonlinear distributed systems

are addressed for instance by Banach & Baumann (1990), Byrnes & Gilliam (1991),

and Kang et al. (1991) for the Burgers equation.

The control of fluid flow itself is a rapidly developing subject which has been

already addressed by several authors. Beside the work mentioned at the begin-

ning of this introduction, emanating mostly from the fluid mechanics community,

more theoretically oriented work can be found in Gunzburger et al. (1991, 1992),

Sritharan et al. (1991) and Abergel & Temam (1990, 1992); see also the references

above for the Burgers equation and the book edited by Sritharan (1992) and the

proceedings of the IMA Conference edited by Gunzburger (1992).

Let us summarize for the more mathematically oriented reader the theoretical

and numerical work done on control of flows. Gunzberger et al. consider various op-

timal control problems (open loop) in fluid mechanics and study mathematical and
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numerical problems such as the existence of optimal controls, necessary optimality

conditions of the first order, the discretization of these problems by finite elements,

convergence and error estimates for the discrete problems. Sritharan and coauthors

consider also mathematical and numerical problems for control of flows. For open

loop problems they provide the open loop control using an appropriate version of

the Maximum Principle of Pontryagin. They study theoretical questions concern-

ing closed loop problems in relation with the Hamilton-Jacobi-Bellman equation.

This approach provides in principle the feedback law corresponding to the optimal

control but necessitates the solution of hyperbolic equations in infinite (or large)

dimensions. In the articles mentioned above concerning the optimal control of the

Burgers equation, the authors introduce a feedback law for a related linear problem.

The solution of the Burgers equation supplemented with this feedback forcing is

then studied; it is shown that damping is enhanced and this is numerically confirmed

for solutions of these equations which display a discontinuity (shock). Finally the

work of Abergel & Temam (1990, 1992) already referred to, concerns theoretical

and numerical problems for the control of turbulence: for several physically relevant

situations the problem is set as an optimal control problem, existence of optimal

control is proved; necessary conditions of optimality are derived; gradient type al-
gorithms are described which necessitate the classic techniques of control theory (in

particular adjoint state and adjoint equations) for their effective implementation.

The work that we present here departs from the previous works. Instead of

searching for an optimal control, we address the more practical problem of trying

to reduce the cost function through a procedure which could be efficiently imple-

mented, i.e. we favor effectiveness over optimality. The determination of the cost

function is a part of the modelling of the control problem. As it is explained later,

the cost is a weighted sum of the cost generated by the flow that we want to re-

duce (e.g. the drag force), and the cost of the work necessary to implement the

control. From the point of view of control theory the method that we present here

is a suboptimal procedure based on the determination, at each instant of time, of

the best control among an a priori chosen class of feedback controls. For cases in

which off-line optimal designs can be constructed, the implementation of real time

feedback controllers usually requires much more computational power than off-line

optimal designs. However, it is quite difficult to implement a simple off-line optimal

controller for unsteady flows, particularly for turbulent flows. The optimal control
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procedures suggested by Abergel & Temam (1990) require the iterative solution

of the Navier-Stokes equations and their adjoint on the global time period; such

computations are out of reach at this time (see also appendix A). Accordingly, the

implementation of off-line and on-line optimal controllers for unsteady flows, espe-

cially for turbulent flows, is very difficult. Hence, as compared to optimal control,

our suboptimal feedback procedure does not require excessive computer resources
because it only requires information at each instant of time. At this stage, we

do not have any theoretical justification of our method from the point of view of
control theory, except the good numerical results.

As a first step towards the solution of the much more difficult problem of control-

ling the Navier-Stokes equations, we consider here the control of systems governed

by the Burgers equation. The Burgers equation has been studied extensively both

theoretically and numerically. The Burgers equation describes the formulation and

decay of weak waves in a compressible fluid as well as being a one-dimensional

model of the Navier-Stokes equations. Chambers et al. (1988) showed that the

statistics of the solutions of the Burgers equation subject to random forcing quali-

tatively resemble those of the velocity fluctuations normal to the wall in the direct

numerical simulation of channel flow by Kim et al. (1987).

The objective of this study is to develop a feedback control method of minimiz-

ing a cost function, and to apply that method to the Burgers equation as a first

step towards application to fluid mechanics problems. The extension of the feed-

back control algorithm to the Navier-Stokes equations will necessitate more delicate

developments and more extensive computer resources and will be addressed in the

future. Chapter 2 is partly expository and directed to fluid mechanicians not famil-
iar with control theory. It shows how to cast the problem of controlling turbulence

in a channel flow into a problem in optimal control theory, and introduces the for-

malism and language of control theory. Chapter 3 describes our feedback control

algorithm for general stationary and time-dependent problems. Also, chapter 3

presents the method for the purpose of suboptimal feedback laws when an analyti-

cal representation of feedback laws, i.e. an explicit functional dependence between

the quantity being measured by a sensor and the quantity being controlled by an

actuator, is difficult. Then in chapter 4 we apply this method to the distributed

and boundary controls of the stochastic Burgers equation. The results of numerous
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computations with or without control axe presented and discussed. A computa-

tional issue together with practical (or physical) implementation of the present

control algorithm is also addressed in chapter 4. Our method depends partly on

the time-discretization method for the state equation, namely the Burgers equa-

tion. Hence we study in this chapter the effect of the time-discretization method

on the control algorithms and present the results of the practical control algorithm.

Conclusions and discussions are given in chapter 5. Appendices B, C and D contain
some technical details on the implementation of the control algorithms.
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CHAPTER 2

INTRODUCTION TO CONTROL THEORY:

SOME MODEL PROBLEMS IN FLOW CONTROL

Keeping in mind that turbulent flows are time dependent, we will distinguish
between stationary and time-dependent flows and start with the case of stationary

flows.

2.1 Stationary channel flow

Consider a stationary channel flow, where x is the streamwise direction, z is the
spanwise direction, and the walls are at y = ±1. The mass flux is prescribed and
is equal to M. Periodicity of velocities and pressure is assumed in the z direction,

and periodicity of velocities with an unknown drop of pressure is assumed in the x
direction. Let u = (ul, u2, u3) denote the velocity vector of the fluid, and assume
that the flow is controlled through blowing and suction at the wall, i.e. through

the wall-normal velocity at the wall

4) = u21w, (2.1)

where f f 0 dxldx3 = 0 is imposed so that the mass flux M is constant. It can be

shown that the stationary Navier-Stokes equations reduce to a functional equation
for u (see e.g. Temam 1984, 1991) involving 4):

vAu + R(u, 4) = 0. (2.2)

Here v > 0 is the kinematic viscosity, A is the so-called Stokes operator, and R
corresponds to the inertial and boundary terms and is a function of u and 0; R

actually depends on M although the dependence is not made explicit here.

A typical optimal control problem for equation (2.2) is the following: find the

best 4 such that some observation -y = Cu achieves some desired value -td or is at
least as close as possible to -fd, where C is a general linear or nonlinear operator
which may involve integrals of u and/or derivatives of u. In the language of control

theory:
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u is the state of the system and equation (2.2) is the state equation;

4 is the control;

-y is the observation.

The cost function could be, for instance, the function J = J(O,)

J(0,) I 11€111 + IIlCu -_ Ydl1 2 . (2.3)

Here I I I (Cu -d-dt I- L2 norm of Cu - ,yd) accounts for the
cost of - being different from d; 1 1112 (1 > 0, 11fl1 = L2 norm of 0) is the cost of

implementing the control itself; I/m is small or zero for cheap controls and large for

expensive controls. For example, high blowing and suction flow rates are reflected

in high values of • I14112. High values of l/m may also be used to empirically

account for indirect costs such as expensive equipments for realizing fast actuator

response. Values of I and m in the cost function are dimensional quantities and are

usually prescribed from a parametric study. Keep in mind, however, that equation

(2.2) is an idealized problem which, due to the absence of turbulence, would only

make sense physically for very viscous fluids.

The mathematical formulation of the problem is the following:

Find 4, which minimizes J subject to equation (2.2), i.e. in the netations used

$
in the optimization theory,

InfiJ(O). (2.4)

The control 0 can be unrestricted or restricted to some admissible set of controls

Uad due to physical and technological limitations.

I u is a function of 0 through (2.2), u = u(O). Hence the second term of J is also a function of
0. Note that u is the traditional notation for the control in control theory, and it is also commonly
use ! for the velocity in fluid mechanics. We use the latter convention here.

In optimization theory InfJ(O) denotes indifferently the problem of minimizing J(O) in the
class of O's or the actual value of the corresponding infimum.
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The methods of calculus of variations indicate that a problem such as (2.4)

posse. ses at least one solution and give us some characterizations on the best 4)
throL gh the adjoint state and some algorithms to reach the best (optimal) control.

Feedback theory involves constructing 4) as a function of u or some observation of

u. Although feedback schemes are mainly relevant to time-dependent problems, we

can formulate such a scheme here.

Searching for the best feedback in a prescribed class of feedbacks, we reduce the

problem to a parameter optimization one. For instance, without advocating such

a choice, we could look for

q = E + Fu, (2.5)

where E and F are a scalat function on the wall and an operator to be determined,

respectively. Now problem (2.4) with equation (2.5) substituted into equation (2.2)

becomes:

Find E, F which minimize J(O) = J(E, F) subject to equations (2.2) and (2.5):

Inf E,FJ(E, F). (2.6)

Instead of equation (2.5) more general shape functions O0(u), ... , 0r(u) could be

considered with

r
E= aioi(u)" (2.7)
i=0

The practical importance of these shape functions is discussed in sections 3.1, 4.3

and 4.4. Note that as in equation (2.5), the 8i's are functionals of u and not

simple pointwise functions. They may involve complex or nonlocal operations such

as differentiat.on or integration of u. The ai's are determined through a control

algorithm and thus are a posteriori functions of u.

2.2 Time-dependent channel flow

The state equation is the Navier-Stokes equations including the boundary condi-

tion (2.1) and other boundary conditions. We infer from the mathematical theory

of the Navier-Stokes equations (see e.g. Ladyzhenskaya 1963 and Temam 1984,
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1991) that these conditions and equations amount to an evolution equation of in-

finite dimension for the velocity field u = u(x, t). It reads (compare to equation

(2.2))

Ou
-,§ + vAu + R(u, )=0. (2.8)

Here u is the velocity vector field; again, R accounts for the inertial and boundary
terms and depends on the mass flux M, although the dependence on M is not made

explicit here.

The drag is essentially measured on average by D = D(u):

D JI,!u ,X2=- ý~ 8x 02=1 1 dx1 dx3. (2.9)

Here x1 = x, X2 = y, X3 = z, and x2 = y = ±1 are the walls. The choice of the cost

function is at our disposal and depends on the costs that we want to reduce. If we

choose to reduce a time average of the drag as expressed by equation (2.9), then a

plausible cost function could be

1 1 foT f wmlfoT
J(M) = 11J 2dxldxddt + M ID12 di, (2.10)

where D is a function of 0 through u which itself is a function of 0. A control

problem like (2.4) can be posed:

Find 4 = t(xix3 , t) which minimizes J subject to equations (2.8) and (2.10):

InfoJ(O). (2.11)

The methods of control theory and calculus of variation (Lions 1971), as developed

in Abergel and Temam (1990), prove the existence of an optimal control (the best

0) and produce an algorithm for its determination. However, in their present form,

and especially for turbulent flows, these classical methods require the iterative
solution of the Navier-Stokes equations and their adjoint (see chapter 3) on the
whole and large interval (0, T); such computations are out of reach at this time
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(see appendix A). Furthermore, optimal control of unsteady flows depends on the

initial distribution of velocities ult=o, although one would hope that the effects of

initial velocities dissipate as T becomes large.

If equation (2.8) were linear, the optimal control would be given by a linear

feedback law:

0 = E + Fu, (2.12)

where F is an operator that is the solution of a Riccati type equation, and E is

easily determined. When equation (2.8) is nonlinear, to the best of our knowledge

there is no general method for constructing the feedback law corresponding to the

optimal control even for finite and small dimensions (as in flight control), not to

mention high or infinite dimensional problems. There is also no general nonlinear

estimators and the solution of a control problem could require in principle the

repeated solution of the state equation with different forcing terms.

In the next chapter we describe some empirical and not yet fully mathemati-

cally justified procedures proposed to address these problems and overcome these

difficulties.
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CHAPTER 3

SUBOPTIMAL CONTROL AND FEEDBACK PROCEDURES

In this chapter, we present a systematic approach to the mathematical formu-

lation of the problem of minimizing a cost function using feedback control and

parameter optimization procedures. We consider first the stationary case and then

the more important and more relevant case of time-dependent problems.

3.1 Stationary problem

Equations (2.2), (2.3) and (2.4) define an optimal control problem which can be

satisfactorily solved by a gradient algorithm (although a conjugate gradient method

would be better, we now restrict ourselves to a gradient algorithm for simplicity).

The gradient algorithm consists of computing the Frchet derivative

pJ (3.1)

and using the following iterative process for the cost minimization,

- = -p.•(0k), (3.2)

where Ok is a member of a sequence of controls and p is the parameter of de-

scent whose optimal value can be found either by a trial-and-error procedure or by

relevant theoretical studies (see e.g. Luenberger 1973). By Taylor's formula and

equation (3.2),

t When it exists, the Fr~chet differential of J in the direction of ý is defined by (Finlayson 1972)

P-'. -- _lim

-04
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j(Ok+1) j(0k) + VJ(-() (k+1 - 0k),

(3.3)
J(ok+l) •J(0k) _ pI Vi (Ok) 12

so that the sequence J(0k) is clearly decreasing. With the same methods as in

Abergel and Temam (1990) relying on optimization theory, we can prove that the

sequence Ok will converge to an optimal control for suitable p's if the initial value

0' is chosen sufficiently close to an optimal state.

The introduction of the adjoint state and adjoint state equation produces a

convenient way to compute the Fr6chet derivative (3.1). Let

D~uu =--, (3.4)

where the right hand side of equation (3.4) is the Fr6chet differential of u with

respect to 0 applied to a test function 0 (of the same type as 0). Then, by Fr~chet

differentiation of equation (2.2), we promptly see that qI is solution of equation

vA--•- DR (u, 0)7 + -D-(u, 0. (3.5)

By Fr6chet differentiation of the functional J in (2.3) and using equation (3.4) we

obtain
DJ57---0, =I < , >,, >+ m < CuM)-'Yd, C,9 >,

where < .,. > indicates the inner product. Define the adjoint state C through the

following adjoint state equation (see e.g. Luenberger 1973)

D)R
vA*( + (-1-u (u, 4))*( = C*(Cu() - -yd). (3.6)

In equation (3.6) and hereafter asterisks, *, indicate adjoint operators with respect

to the inner product under consideration < .,.>. Then
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< CU(M)I-7d, C, > =< C*(Cu(q) - 7d), '7 >

DR

=< C, vAvq + ( DR(u, 0))'? >

-,<•R (u,,) > (by (3.5))
DR

- < (-.-.(u,)W)CI >.

Hence, we get

:DJ. :DR
V--J=1 < > m < ( -< (u,

Since 4 is an arbitrary test function, we deduce that

:DJ(4 1 k) -DRk~*

b-•-,,4,= 1ok- M -V ,¢k))*(k (3.7)

and we are in a position to implement the gradient algorithm (3.2). Note that the

solution of the adjoint equation is used to obtain the Fr6chet derivative in equation

(3.2). Once ok is known, compute the adjoint state Ck by solving equation (3.6)

with 0 = qk and u = uk. Obtain 01k+1 from equation (3.2) using equation (3.7).

Then compute uk+1 by solving the state equation (2.2) with 41 = - k+l, and continue

until convergence.

3.1.1 Suboptimal feedback laws

The feedback procedure described above results in the determination of 41 as an

implicit function of u in the entire domain: indeed, in order to update the control

input 4, one has to solve the adjoint state equation (3.6), in which data on u may
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be needed for the entire domain. However, for the practical implementation of

the control algorithm such a detailed knowledge of u is not available. Of course,

in some control problems, in particular in the linear case, the construction of a

dynamical model of the actual system is quite possible using appropriate filters or

state estimators (e.g. Kalman filters and compensators), so one may not necessarily

need the knowledge of u in the entire domain. Given a limited data, such state

estimators aim to provide important dynamic behaviors of the actual systems.

However, it is quite difficult to find such a dynamical model in nonlinear unsteady

flows, especially in turbulent flows. At the end of chapter 4, we present a method to

avoid a detailed knowledge of u for the boundary control of the stochastic Burgers

equation.

If the control 4, is explicitly determined from measurable quantities, it will be

much easier to construct feedback control devices. Such feedback laws are pursued

in this subsection. Physically a feedback law amounts to a formula relating the

quantity being measured by a sensor such as pressure or stresses or temperature to

the quantity being controlled by an actuator such as blowing rate at the boundary.

In the previous section, we indicated how to determine 0 which minimizes the

cost. For most nonlinear control problems, 4, has an implicit dependence on u,

i.e. 4, can not be represented as an explicit function of u. However, it may be

possible, from physical intuition or experience, that feedback laws for 4,, 4 = 0(u),

can be constructed which produce a reduction of costs: For example, in the drag

reduction study (PART I), the control relations such as 4 = -u2Iy+.10 and 4, =

aI8/1x3(Ou3//x2)Iw give a significant reduction of drag, where 4 is the blowing and

suction at the wall, u2 and u3 are the normal and spanwise velocities, respectively,

and al is a constant. Here, we present a quite general framework which should be

able to accommodate even the experimental experience gained from the physical

observation of unsteady flows.

Suboptimal feedback laws can be implemented in a similar manner by looking

for the best feedback

4 = 0(u), (3.8)

in a particular class of functions corresponding to a suitable approximation of equa-

tion (3.8)

4 - a0 + a 191(u), (3.9)
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where 01(u) is prescribed from physical intuition or experience, and aO and aI are

determined through a control algorithm and thus have an implicit dependence on

u, i.e. ao = ao(u) and al = al(u). In fact, equation (3.9) contains two elements

of equation (2.7) (00(u) = 1). As we already mentioned, 01(u) can be a simple

function of u or it can be a complicated functional involving integrals or derivatives

of u. For example, 81(u) can be the velocity derivative at the wall which can be

measured directly in the physical implementation of the control algorithm and thus,

81(u) represents the quantity that is measured using suitable sensors in the control

process. Note that, when 01 = 0 (no input from the physical experience), the

optimization problem is the initial control problem (2.4). Hence, the optimization

problem with 01 = 0 produces the optimal control but it does not provide an explicit

feedback law. The feedback law in (3.9) can be obtained from control theory for

linear optimal or suboptimal problems (see equation (2.12)). For nonlinear control

problems, however, if the function 81(u) cannot be determined by control theory, it

can be specified by physical intuition. The proper choice of 01 may produce simple

expressions for ao and al (e.g. constant values). Such a feedback will be certainly

easy to implement. One of our objectives, therefore, is to inquire whether one can

determine ao and al as explicit functions of measurable quantities which can be

prescribed a priori in practical implementations.

For a feedback of this type, set e = {ao,al}. The cost function J is chosen to

be a function 7 of ao and al through equations (2.3) and (3.9) t

.(e) = -11e112 + --1tCu-_Ydl12, (3.10)

where 11e112 = I1c,0o2 + 1c1112.

The analog of the gradient algorithm (3.2) consists of constructing two sequences

a~k, ak recursively defined by

t We implicitly assume that J(e) is finite. If this is not true for all e's in the considered class of

feedbacks, we discard those for which J(e) is infinite. Note that this difficulty does not arise in the
discretized problem.
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k+1 k V=k

(3.11)

ak+1 ak k k+1  - 1  -P1 --(alo 1).

Note that the parameters of descent p > 0 are chosen differently in the two equations

(3.11).

The introduction of the adjoint state and adjoint state equation again produces
a convenient way to compute the Fr6chet derivatives in equation (3.11). Let us
define first qi using the Fr6chet differential in the direction of E - {&0, &1}

Vu . Du Do,
7= e = , (3.12)

where

Do,= 2D )&0 + 2LO
Ye = 2)---a

= &0 "+" &101 +" al D)u ye (2P01

= &0 +&6101 + al-11 77.

Then, by Frechet differentiation of equation (2.2), we promptly see that Yj is the
solution of the equation

PR DR P) 1
vA?7 + 5- q + 7jO (&0 + &101 + alpo 77) = ,

or,

PDR DR DO)1  VDR&

(vA+-+-al-•-) +} -"(&0+&i10) -" 0. (3.13)
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By Fr6chet differentiation of equation (3.10) using equation (3.12) we obtain

Di
-ee= I < aO,60 >+l < 01,& 1 >-+-m < Cu- Wd,C71 >.

Define now the adjoint state C through the following adjoint state equation

DR DR 'DOI .,
(vA +-•u +-••O axI) = C*(Cu -Yd). (3.14)

Then by the same procedure as before we get

Di. DR
DeC l < ao,&O >+l < a,,&1 >-m< (I-DR (&0+&101)>DDO

(3.15)

=< laom( DR )*,&> + < lli-m01(D)*C 61>.

Since &0 and &6 are arbitrary test functions, we deduce that

DJ k, ak) aok _ (DR( ,kk)*(k
Va-o 0  1 0 'DOu /

(3.16)
DiJ, fkl) =ojk mOl(uk)(DR(uk, Ok))*Ck
Va1j 0m1 1 D

and we are in a position to implement the gradient algorithm (3.11). Note that

the solution of the adjoint equation is used to obtain the Fr6chet derivatives in

equation (3.11). Once ao and a, are known, compute the adjoint state (k by

solving equation (3.14) with q0 = Okk and u = uk. Obtain a 1+1 and a£+l from01
equation (3.11) using equation (3.16). Then compute uk+1 by solving the state

equation (2.2) with qk+l given by equation (3.9), and continue until convergence.

3.2 Time-dependent problem

We now consider the case of time-dependent problems. The suboptimal proce-

dure that we propose in this case consists of the following:
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(1) Discretize the state equation in time.

(2) At each instant of time, the discretized equation is a stationary one to which

the above procedure is applied, while the cost function is an instantaneous version

of equation (2.10) (i.e. no time averaging, see equation (3.20)).

This procedure means that, at each instant of time, we are directing the flow in a

direction producing the decay of the instantaneous cost function. Of course, there

is no reason to believe that the controls will be o;-*imal, or even that the cost will

actually decay in the long range. However e numerical experiments conducted

in the case of the stochastic Burgers equat1,n and other model problems (not

reported here) show that indeed the cost function decreases significantly without

being monotonically decreasing all the time (see chapter 4 for the Burgers equation).

Consider the evolution state equation (2.8); again, this could be the original
Navier-Stokes equations for channel flow. For step (1) we consider here the Crank-

Nicholson method:

Bn -en--1 i 1 1 1 1

At + j(Aun + Aun- ) + ý(R(un,4n) + R(unl1,4n-1)) - 0, (3.17)

which we rewrite as

Au + ~n(u, 0) = 0, (3.18)

with u =u, k = on, and

Au =un + - AtAun,
2

(3.19)

n (Unon) =--un-1 + 'At(vAun-1 + R(un, on) +

At each step n, the cost function J is still given by equation (2.3)

J" = J(o") = 1II11nI2 + 211¢" - _td112 , (3.20)

with un function of okn(= un(ekn)) through equations (3.17) - (3.19). Note that for

a sufficiently small At there exists a unique solution un to equation (3.17). Hence
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the difficulty of non-uniqueness of solution for equation (2.2) does not arise for

equation (3.18).

The adjoint state is defined as in equations (3.4) - (3.6)

17"n -Dun• (3.21)

A, q1n + TM (un, on) /n +I VR-(un, on) • -0, (3.22)
DDue.7

A*(n + (T 7 (U ,on))*( = C*(Cun - d). (3.23)

The gradient algorithm (3.2) now reads

0n,k+1 _ = _p _(0 n), (3.24)

where •,n,k is a member of a sequence of controls at a given time step n, p is the

parameter of descent, and k is the iteration index at each time step. By Taylor's

formula, as in equation (3.3), for all n, k,

j(00n~+1) <5 j(00n),

and as k 00 o, converges to on which achieves the minimum of j,. It is not

necessarily true that the minimum of jn decreases as n increases, i.e. for all n,

jn < J'- 1 . (3.25)

Using the property of adjoint operator as is done in previous section, we obtain

T" ( - (u n,,, (3.26)

and we are in a position to implement the gradient algorithm (3.24). Note that the

solution of the adjoint equation is used to obtain the Fr6chet derivative in equation

(3.24). Once 0,0 is known, compute the adjoint state (,k by solving equation
(3.23) with on = 00 and u" = unA. Obtain 00,k+1 from equation (3.24) using
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equation (3.26). Then compute un,k+1 by solving the state equation (3.18) with
0 n = 0nk+1, and continue until convergence.

Suboptimal feedback laws for the time-dependent problem can be implemented

in a similar manner as described in section 3.1.1.
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CHAPTER 4

APPLICATION TO THE STOCHASTIC BURGERS EQUATION

As a first step towards application to the problems in fluid mechanics, the feed-
back control procedures described in chapter 3 are applied to the Burgers equation

subject to random forcing. This equation contains nonlinear convection and dif-

fusion terms and its solution exhibits a chaotic nature; these qualities make it a

natural model for the more complicated Navier-Stokes equations. We first specify
the form of the Burgers equation that we consider (section 4.1). Then we show how

to implement our feedback procedure for distributed and boundary control prob-

lems (section 4.2) and present and discuss the results of our numerical experiments

(section 4.3). The form of the effective feedback law is discussed in section 4.4.

We also discuss several implementation issues (discretization of the equation and

practical implementation of the feedback procedure) in section 4.5

4.1 The Burgers equation with random forcing

Consider the randomly forced Burgers equation with no-slip boundary conditions

a ij 2  0,,2-
+ +2 = <+ F(E't) o < L, (4.1)

fi(i = 0) = •i(i = L) = 0,

where ii is the velocity, v the kinematic viscosity, j the random forcing, and L

the length of the computational domain. In the absence of forcing (Q = 0), the

solutions of equation (4.1) decay to zero from any bounded initial data.

The forcing function ý is a white noise random process in x with zero mean

(see Chambers et al. 1988; Bensoussan and Temam 1972, 1973). The mean-square

value of the dimensional forcing, a 2 , defines a velocity scale U = vla'L. The Burgers

equation in nondimensional form using U and L as the typical velocity and length

reads
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au 0 u2 1 u U
Ox + x2 - Recz 2 + X(Xt), 0<x <1, (4.2)

u(X = 0) = U(X = 1) = 0,

where u, x, t and X are dimensionless quantities, Re is the Reynolds number UL/v,

and

< X >X=O, < X2 >Z1 (4.3)

Here < . >z denotes the average value over space. A Crank-Nicholson method in

time and second-order centered differences in space are used to discretize equation

(4.2). A Newton iterative method is used to solve the discretized nonlinear equation.

For the following I denotes the number of grid points, At the computational

time step, Ax = 11(I - 1), un z u((i - 1)Ax, nAt), Xi ;" X((i - 1)Ax, nAt), and

i = 2, ... , I - 1. At each instant of time nAt, the X! are uncorrelated random

variables; XP is constant on a time interval (p At,., (p + 1)At,.), where p is an

integer, and, if nAt and n'At belong I wo different such intervals, all the X!' are

independent of all the XP (n' > n), with < X4 >z= 0 and < (Xn)2 >x= 1.

The solution of the Burgers equation with random forcing (equation (4.2)) de-
pends not only on the Reynolds number Re, but also on the mean-square value

< X2 >z and the time scale Atr of the random forcing. For all calculations pre-
sented here, < X >z= 0, < X2 >X= 1, and At = 0.001, which is the largest time

step which accurately predicts the small scale motion with the values of Re and

Atr used in our calculations. A uniform computational mesh of 2048 points is used

in x (Ax = 1/2047). Three different Reynolds numbers, Re = 500,1500,4500,

and three different time scales, Atr = 0.01, 0.1, 1, are investigated. Instantaneous

velocity fields for the different Reynolds numbers and different time scales Atr are

shown in figure 1. Strong thin internal shocks can be seen for high Re and large

Atr. Figure 2 shows the effect of the Reynolds number Re and the time scale Atr

on the mean velocity. The magnitudes of the mean velocity and the mean velocity

gradient clearly increase with increasing Re and Atr. Due to the convective nature

of the solution of the Burgers equation, the wall layer thickness gets thinner as

the Reynolds number increases (figure 2 (a), also in Chambers et al. 1988). The

mean velocity gradient near the centerline, however, is not much changed with the

115



Reynolds number. On the contrary, increasing Atr with a fixed Reynolds Pum-

ber significantly increases the mean velocity gradient near the centerline as well as

near the wall layer (figure 2 (b)). Wall layer thickness, however, is not affected by

increasing Atr.

4.2 Feedback control procedures

Two types of feedback controls are investigated: distributed and boundary con-

trols. Distributed control by body forces corresponds to the unrealistic case where

volume forces are applied throughout the fluid; however it turns out to be a good

introduction to more interesting and more complicated situations. It also contains

all of the basic features of general control problems. For boundary control the con-

trol is the boundary velocity, which is more practical in fluid mechanics and can be

implemented in real situations.

4.2.1 Distributed control (formulation)

The nondimensionalized Burgers equation with distributed control is

au a u2 1 a2uN+ - x 2 - Re + x(x,I) + f(x,t), O<x<l,

U(x,t = 0) = Uo(X), (4.4)

u(x=0,t) = 0, u(x=1,t) = 0.

Here X is the random forcing and uo is the initial data, which is an instantaneous

solution of the Burgers equation with random forcing X and f = 0 (equation (4.2)).

The control input forcing f is of the form

f = ao + aial(u). (4.5)

Here 01 (u) is prescribed from physical intuition or experience (see sections 3.1.1

and 4.3), and ao and al are determined through our control algorithm and thus

have an implicit dependence on u. Note that ao and al are not constant in time

and space and they are continuously updated with the change of u.

At each instant of time, the cost function considered is
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Id •md •1 _•) Oun ,
jn = j(en= Id11e0i 2 + ad O...)2 dx, (4.6)

'2 21fo Ox

where Iell2 = 1Icl0112 + 11a,1 2. Here we want to reduce the mean square velocity

gradient inside the domain at the expense of the control input. The choice of Id and

md (or more precisely of the ratio Id/md) is an engineering problem which is not

addressed here, although we do consider in our computations several values of this

ratio. The detailed procedure of distributed control by body forces is described in

appendix B.

4.2.2 Boundary control (formulation)

The nondimensionalized Burgers equation with boundary control is

Ou a u2  1 02u

N ' Ox 2 - + X(x2t), O<x<l,

u(xt = 0) = Uo(x), (4.7)

u(x = 0,t) = 00(t), u(x = 1,t) = (t).

Here X is the random forcing and uo is the initial data, which is an instantaneous

solution of the Burgers equation with random forcing X and f = 0 (equation (4.2)).

The control input velocities at the boundary, tko and •b1, are of the form,

00 = a0,0 + aj, 0 0 1 ,C(u), (4.8)

01 = amu + ali0i,1(u),

We denote ao = {ao,o,ao,l},al = {alo,al,1}, and 01 {01,0, 01,1}. Here the

01(u)'s are prescribed from physical intuition or experience Osee sections 3.1.1 and
4.3), and the ao's and al's are determined through a control algorithm and thus

have an implicit dependence on u. Note that the ao's and al's are not constant in

time and they are continuously updated with the change of u.

At each instant of time, the instantaneous cost function considered is
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j,= j(en)= Llen 112+ mbL(t!)= (-= + )z=i] (4.9)
2 ~ 2 Oxz 'a z

where h[ell 2 = I[a0ol 2 + lla112. Here we want to reduce the wall velocity gradient
at the expense of the control input. The detailed procedure of boundary control

by boundary velocities is described in appendix C.

4.2.3 Numerical algorithm

From the previous subsections, we can write for both control problems the nu-

merical algorithm of minimizing the cost function jn:

Step 1 : Start with an initial condition u, or a solution of the previous time step

uk--1 -- Un-,. Choose initial an' -1 and
0 1

Step 2 : Solve the adjoint equation with un,k-1, and fnk-1 or 1n,k-1

to obtain n,•-1.

Step 3: Update an'k and ank

Step 4 : Solve the discretized Burgers equation with fnk or 009 ,k to obtain unL.

Step 5 : Iterate Steps 2-4 until un,k converges.

Step 6 : When converged, un = u0.

4.3 Results of numerical simulation

Values of I and m in the cost function (equations (4.6) and (4.9)) are dimensional

quantities and are usually prescribed from a physical setting of the actual systems

(see section 2.1 and above). Also the problem can be scaled by I/rn. Once I and

m are given, we need to find the best p (the parameter of descent). We do it by
trial and error instead of by theoretical procedures (see e.g. Luenberger 1973).

Note that conjugate gradient methods can be .sed to eliminate the unnecessary

trial-and-error procedure and also to get faster convergence.

As mentioned in detail in section 3.1.1, for many cases feedback laws are in

general hard to obtain from a mathematical approach, and one must resort to

physical intuition or experience for a better result or for a simple feedback law.
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The reasons for using the formulations (4.5) and (4.8) rather than using a simple
formulation (f = f(u) or 0 = 0(u)) are two-fold: First, the formulations (4.5) and

(4.8) can accommodate experience and physical observations. Second, they can

accommodate a good feedback law if we prescribe a proper 01(u).

We consider two cases for functions 81 in equations (4.5) and (4.8): 81 = 0 and

81 9 0 (Here, for simplicity we let the functions, 81,0 and 01,1 in equation (4.8), be

equal to a same function now denoted 81; hence both ends, x = 0 and z = 1, play
the same role.). We call the former non-prescribed feedback control because in that

case the control input itself (f or 0b) does not have any information from physical
experience and is determined directly from a mathematical approach. Note that

non-prescribed feedback control still yields a relation between u and 0 (f or 0)
because the ao's are continuously updated from our optimization procedures which

need information on u (see section 4.4 on actual feedback laws). Since there are two
different parameters p0, pl in the case 61 9 0, many trial-and-error iterations are

needed to find the best p0 and pl. Non-prescribed feedback control (81 = 0) is first
investigated to find the best P0; the best P1 is then searched while holding ao = 0.

For most cases considered in the following, non-prescribed feedback control is better
at finding a local minimum of the cost function in the sense that non-prescribed

feedback control gives faster and more stable convergence. However, we believe that

this is not always the case since it depends on the function type 01 and the cost J
as well as on the gradient algorithm. In some other situations or with a different

choice of the shape function (the class of feedback laws), the results may turn out to

be better. Most of the results presented below were obtained for the non-prescribed

feedback control case; some of the cases with 01 6 0 are also presented.

In this section, we only discuss the results of the cases with Re = 1500 and

Atr= 0.01. Cases with different Reynolds number (Re = 4500) and different Atr

(= 0.1) have also been tested, and the results show the same trend as those with

Re = 1500 and Atr = 0.01. Figure 3 shows the time-averaged mean velocity U of
the no control case with Re = 1500 and Atr = 0.01 and the initial velocity uo used

in the following controls.
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4.3.1 Numerical results for distributed control

Two types of shape function 01 (equation (4.5)) were investigated: 01 = 0 (non-

prescribed feedback control), and 01 = u. Concerning the parameters !d and mrd,
we have chosen quite arbitrarily to study the following cases:

(i) 1d=l,md=1; (ii) 'd=l,md=2047(=-1/Ax); (iii)d-=l,md-=4.2x106-(=
l/Ax2 ); (iv) Id = 0,md = 1.

Results with control were compared to those with no control. A set of random

values of the momentum forcing X was stored and used for both the control and
no control cases for the accurate estimation of the parameter p. Case (i) showed
almost no change of the cost when control was applied. When the ratio of the
weight parameters, md/ld, is small, the input cost becomes so expensive that there
is no means of reducing the total cost by addition of controls.

With non-prescribed feedback control (01 = 0), optimal values po of 1, 0.001
and 10000 were found for cases (ii), (iii), and (iv), respectively. Effects of the
parameter of descent po on the cost function and its convergence are shown in
figure 4. Larger cost J or divergence of the solution was obtained for po larger

than the optimal po, and slower convergence was achieved for smaller po. Case
(ii) needed about 6 iterations to converge (figure 4 (b)). Cases (iii) and (iv) need

many more iterations (about 50) to converge. From the practical point of view,
however, it is not necessary to get a converged solution since a few iterations give
a significant reduction of the cost function.

Figure 5 shows the time history of the cost, energy (= fJ ½u2 dx), wall velocity
gradient, and momentum forcings (random input X and control input f) at x = 0.5

for case (ii). Figure 6 shows the same for case (iii). Results of case (iv) are
essentially the same as those of case (iii). It can be seen that the distributed

control significantly reduces the cost as well as the energy inside the domain (see

figures 6 (b) and 7 (d)).

Since one of the effects of control is to cancel or attenuate the effects of random
forcing, it is interesting to investigate a case with no random forcing and no control

(X = f = 0) and the same initial velocity u., and compare the results to those with
control. Temporal evolutions of cost and energy, and velocity profiles at t = 2 with
no random forcing and no control (X = f = 0) are compared with control cases
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(ii) and (iii) in figure 7. Energy and costs rapidly decrease and the velocity profile

is smoothed when there is no random forcing. The control simply attenuates the

effect of the random forcing for case (ii). Case (iii), however, shows that the control

can do more than cancel the effects of random forcing.

The case 01 = u was tested next. By setting a0 = 0 in case (ii), the best pi

was searched for. pl = 2 gave a larger cost and Pl -< 1 gave no change of cost as

compared to the no control case. The sensitivity of the cost function with respect to

the control variables is a good indicator of the effectiveness of the control variables

in reducing the cost. As equation (B.7) suggests, the sensitivity is a function of not

only the time step (n) but also the iteration (k). Convergence of the sensitivity

with fixed n is strongly dependent on the parameter p, but the temporal evolution

of the sensitivity at the first iteration is nearly independent of p. The magnitudes

of the sensitivities of the cost functions for cases (ii) and (iii) were measured with

the parameters p0 = pl = 1 for case (ii), and po = Pl = 0.001 for case (iii). The

sensitivity with respect to al was at least two orders of magnitude smaller than

that with respect to ao (figure 8).

4.3.2 Numerical results for boundary control

For simplicity, the functions 01,0 and 01,1 in equation (4.8) are taken to be the

same so that both ends, x = 0 and 1, play the same role (01,0 = 01,1 = 81).

Three types of such shape function 01 were investigated t: 01 = 0 (non-prescribed

fea c, a -/[1 + (0")2]. Concerning the parameters
1b and mb, we have chosen quite arbitrarily to study the following cases:

(i?) Ib = 1,rmb = 2.5 x 10-7 (= Ax 2 ); (ii') lb = 1, mb = 5 x 10-4 (= Ax); (iii')
1b=l,rMb=l; (iv')lb=0,rmb=l.

Results with control were compared to those with no control. A set of random

values of the momentum forcing x was stored and used for both the control and

no control cases for the accurate estimation of the parameter p. All cases except

t Again these choices were based on physical intuition but, as explained hereafter, the results are

not satisfactory. The last function was chosen to limit the magnitude of 01 to less than one; In this
way one can expect equation (4.8) to be a more accurate truncation of the Taylor series expansion
of 0(01).
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(i') showed a significant reduction of the cost when control was applied. Case (i')

showed no reduction of the cost since mb was very small relative to 1b. With non-

prescribed feedback control, optimal values P0 of 0.001, 10-6 and 10-6 were found

for cases (ii'), (iii0), and (iv'), respectively. Effects of po on the cost function and

the sensitivity are the same as those described in the distributed control subsection.

Cases (ii'), (iii') and (iv') needed about 7 iterations to converge.

Figure 9 shows the time history of the cost, energy, wall velocity gradient, and

velocity profile at t = 2 for case (ii'). Figure 10 shows the costs of cases (iii') and

(iv'). Temporal evolutions of the energy, wall velocity gradient, and velocity profiles

of cases (iii') and (iv') are quite similar to case (ii'). In contrast to distributed

control, the energy inside the domain is changed little though the cost and 0u/0z at

the wall are reduced significantly. The velocity profile at t = 2 shows that boundary

control modifies the flow field only near the wall. A longer time integration up to

t = 100 has been completed for case (iii'). Again only the wall region is modified.

One may think that a fixed non-zero wall velocity (passive control) may reduce

the cost or Ou/Oz at the wall and may even give more of a reduction than does

boundary control. Several fixed non-zero wall velocities, u(x = 0) = -us, u(z =

1) = us, were tested in order to study the effect of a slip velocity at the wall, where

us was taken from 0 to 0.1 (for the relative scale of the velocity, see figure 3). All

cases considered showed a negligible reduction or a significant increase of the cost.

We also used the time-averaged value of the control wall velocities obtained from

the feedback control algorithm as a fixed wall velocity. The cost reduction was

again negligible.

As described at the beginning of this subsection, we tested two more shape

functions: 01_. and 61 = r u/(1-+ ('Ou)2). By setting a0 = 0 in case (ii'), the best

pl was searched for. For the function 1i - o the simple gradient algorithm was

unstable and did not converge. For the function 01 = +(0

gave a reduction of the cost but converged more slowly than the non-prescribed

feedback control case. Larger values of pl give either a larger cost or divergence

of the solution. The sensitivity of the cost function with respect to the control

variables was measured with Po = Pl = 0.001. The sensitivity with respect to al

was about an order of magnitude smaller than that with respect to ao.
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4.4 Remarks on the feedback laws

Physically a feedback law amounts to a formula relating the quantity being

measured by a sensor to the quantity being controlled by an actuator. Here some

comments are made on the choice of the feedback laws. As indicated before, our

control is optimal among a prescribed class of feedback laws: see e.g. equations

(2.5), (2.7) and (3.9) in the stationary case and similarly equations (4.5) and (4.8)

in the time-dependent case. Our choices of the feedback laws, i.e. the functionals 0i

or 8ij in equations (2.7), (4.5) and (4.8), were fully arbitrary by the lack of similar

results in the literature. Surprisingly the most efficient feedback laws were "the

non-prescribed ones," i.e. those were the control 0 does not explicitly depend on

the state u. Hence at first sight there is no feedback, but this is not actually true

since the feedback is hidden in the history of the flow. Concerning the feedback

laws we would like to emphasize here the phase diagrams of the solutions using

non-prescribed feedback control for cases (ii') and (iii?) in figure 11. Here one of

the controls (wall velocity) is plotted against one of the observations directly related

to the cost function, namely the normal derivative Ou/Ox at the wall. These phase

diagrams can be considered as the actual feedback lawos resulting from our method.

A linear feedback law is achieved for case (Wii), whereas no apparent relation is found

for case (iii'). For cases (iii?) and (ivW), the wall velocity gradients are nearly zero

irrespective of the magnitude of control wall velocities (figure 11 (b)). Therefore,

a linear feedback law between wall velocity and wall velocity gradient is not found

for cases (iii?) and (ivW). A feedback law for case (ii') is deduced from figure 11:

un(x - 0) = 0.533 aIu -(x - 0),

(4.10)

u =(x- 1) = -0.533 ' In-1(x - 1),

where t = nAt. A natural and puzzling question resulting from the feedback laws in

equation (4.10) was whether we could bypass our procedure and directly implement
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a boundary condition of the type of equation (4.10)

u(x = 0) =A =-(z 0),

(4.11)

u(x = 1) = A = 1),

with A and A' equal or close to ±0.533 as in equation (4.10). We found that nu-
merical instabilities were developing: once the wall velocity obtained from equation
(4.11) is slightly deviated from the value used in actual feedback control procedures,
the wall velocity gradient at the next time step is significantly increased compared
to the feedback control case. Hence the actual boundary condition resulting from
control algorithm is indispensable for stability.

4.5 Further remarks on implementation issues

We make here two further remarks on implementation issues: One is related to
the effect of the time-discretization method and the other is related to some aspects

of the gradient algorithm.

4.5.1 Remarks on the time-discretization method

It is clear that, in the time-dependent case, the time discretization of the evolu-
tion equation strongly affects equation (3.18) and therefore our whole procedure.

In the most extreme case where a fully explicit scheme is used, our method can
not be implemented at all. Hence we have found it important to test our method
with various classical forms of time discretization. We have already presented the
control procedure resulting from a fully implicit discretization of the Burgers equa-
tion using a Crank-Nicholson scheme (see equation (3.17)). We have also tested
our procedure in the case of boundary control using another fully implicit method
(Implicit Euler) and a semi-implicit method (Adams-Bashforth for the nonlinear

term and Crank-Nicholson for the viscous term).

In the case of the boundary control using a fully implicit method, the adjoint
equation (C.4) contains all the interior velocities as well as the boundary velocities
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(or boundary velocity gradients). Hence, a full knowledge of the flow field would be

required for the implementation of the control algorithm which is highly impractical

for physical implementation. On the other hand, in the case of the boundary control

using a semi-implicit method (Adams-Bashforth for the nonlinear term and Crank-

Nicholson for the viscous term), one can circumvent this problem. The feedback

procedure for the Burgers equation using this semi-implicit method is presented in

the appendix D. The resulting adjoint equation (D.2) does not contain any velocities

except the wall velocity gradients. Figure 12 shows the time history of the cost and

convergence of the sensitivity for case (ii') (lb = 1, mjb = Ax). Essentially the same

result is obtained as with a fully-implicit method; the convergence behavior is only

slightly changed.

4.5.2 Practical implementation of the control algorithm

From the practical point of view, sensors and actuators must be placed at the

wall. In this respect, the boundary control is more realistic than the distributed

control. As mentioned above, when the semi-implicit method is used, the resulting

adjoint equation (D.2) does not contain any velocities except the wall velocity

gradients, while all interior velocities should be measured when a fully implicit

method is used. Hence, for the practical implementation of the feedback control

algorithm, one has to resort to the semi-implicit method.

Also, it should be pointed out that all previous computations were carried out

until the cost reached a minimum at each time step n, which required about 7 iter-

ations at each time step. However, in practical situations, the number of iterations

k should be limited to one. This is because in a physical setting &u/&x at the

boundary at a given instant is used to obtain the control input velocity which leads

to a new velocity field at the next instant in time with the corresponding Ou/iOx at

the boundary. Physically one can not use the new data on 8u/Ox at the boundary

to go back in time and refine the input velocity.

In this subsection, we investigate the effectiveness of the control algorithm with

the iteration k set equal to one, the Reynolds number, Re = 1500, and the compu-

tational time step, At = 0.001. Figures 13 and 14 show the time history of the cost

and wall velocity gradient for various iterations k for case (ii') (lb = 1, mb = Ax).

Here, the time scale of the random forcing, Atr, is set to be 0.01. Reductions of the
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Case N control k = 1 =2k = 7
J x 103 1.098 0.4409 0.3183 0.3053

Reduction of J - 60% 71% 72%

Table 1. Variation of the cost with respect to the iteration k for case (ii').

cost as well as the wall velocity gradient are accomplished with a few iterations.

Table 1 shows the mean value of the cost and percentage reduction of the cost. The

cost is significantly reduced with k = 1, and the reduced cost with k = 2 is nearly

the same as that with k = 7, the maximum reduction of the cost. Figure 15 shows

the time history of the cost and wall velocity gradient with k = 1 for case (iv')

(lb = 0, mb = 1). Again, a cost reduction of 87% is found with only one iteration.
Note that, in case (iv'), the control input cost is not included into the total cost,

i.e. a cheap control.

In order to investigate the effect of the random-forcing time scale on the efficiency

of the control scheme, a larger time scale, Atr = 0.1 was used. Time history of the

cost and wall velocity gradient with k = 1 for case (ii!) (lb = 1, mb = Ax) is shown
in figure 16. The effect of random forcing on the wall velocity gradient is clearly

seen. A cost reduction of 87% is obtained by the control, which is clearly larger

than in the case of At, = 0.01, where a cost reduction of 60% was obtained. The
control scheme with k = 1 adjusts to sudden changes in the flow in a short time to

create a cost reduction. Here, the random-forcing time scale is a flow time scale,

and the computational time step is considered the control time scale. Clearly, it
should be much easier to get a cost reduction if the flow time scale is much larger

than the control time scale. The numerical experiments with two different At,

show that this is indeed the case.
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velocity profiles at t = 2: ,x = f = 0; f = 0 and X ; --- , control
(case (ii));......, control (case (iii)).
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CHAPTER 5

CONCLUSIONS AND DISCUSSIONS

Some avenues for the application of the mathematical methods of control theory
to the problem of control of fluid flow were presented. The problem of controlling

turbulence was considered and posed as a problem in optimal control theory using

the methods, formalism and language of control theory. We have presented a

new suboptimal control and feedback procedure, which applies to fairly general
cost functions and fairly general time-dependent equations including in particular

stochastic equations. This procedure was not strictly justified but did produce good

numerical results and is fairly simple.

Feedback control procedures were applied to the stochastic Burgers equation.

Two types of controls were investigated: distributed and boundary controls. Even
though distributed control by body forces is rather unrealistic, it turns out to be

a good introduction to more complicated situations. For boundary control, the

control is the boundary velocity, which is more practical and can be implemented
in real situations.

Several case studies of both types of controls have been completed to investigate
the performance of the control algorithm: the reduction of cost, convergence of the

gradient algorithm, dependence of the sensitivity of the cost function with respect

to the control variables, effect of the parameter of descent, and choice of the form

of the feedback law. Most cases considered showed a significant reduction of cost.

The role of the preassigned form of the feedback law was discussed in sections

3.1.1 and 4.4. The feedback procedures considered in the present study depend on

the time-discretization method used. One would hope that the control results are

insensitive to such numerical considerations. Numerical experiments show that this

may indeed be the case.

The semi-implicit method seems most promising for future and more involved

applications. Indeed, for boundary control using a fully implicit method the adjoint

equation (equation (C.4)) contains all interior velocities as well as the boundary

velocities (or boundary velocity gradients) so that the feedback control algorithm

may not be practical: that is a full knowledge of the flow field would be required for
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the implementation of the control algorithm when there exists no successful state

estimator for the system. However using the semi-implicit method, one can cir-

cumvent this problem. The resulting adjoint equation (D.2) with the semi-implicit

method does not contain any velocities except the wall velocity gradients. Practical

implementation of the control algorithm developed here may be possible with the

restriction of only one iteration (k = 1) at each instant of time. The effectiveness

of the control algorithm with one iteration was investigated: cases considered still

showed a significant reduction of cost.

The result of the application of this semi-implicit scheme to the Navier-Stokes

equations can not be predicted at this time even though the scheme was very

successful for the Burgers equation. The mathematical analysis of this topic and

the application of feedback control to the Navier-Stokes equations are in progress.
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PART III

Direct Numerical Simulation of Turbulent Flow over Riblets
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CHAPTER 1

INTRODUCTION

Organized structures have been observed in turbulent flows over the past three

decades and are known to play an important role in turbulent transport (Cantwell

1981 and Robinson 1991). The awareness of the existence of deterministic structures

has led to substantial research in turbulence control. Skin-friction reduction in
turbulent flow has been investigated by several different passive means, such as

riblets, large-eddy break-up devices, polymer additions, and compliant walls (see

Bushnell & McGinley 1989 and Coustols & Savill 1992). Among those tested to

date, surface-mounted longitudinal grooves have been most successful in reducing

the net drag of turbulent boundary layers in spite of a substantial increase in the

wetted surface area.

Walsh & Weinstein (1978) and Walsh (1980, 1982, 1983) showed that V-groove

riblet surfaces can produce consistent net drag reductions (as large as 8 %) provided

the height and spacing of the grooves axe less than 25 V/ur, where v and Utr

denote the kinematic viscosity and the wall-shear velocity, respectively. The effects
of riblets on turbulent boundary layers have been investigated by several other

researchers: Hooshmand et al. (1983), Gallagher & Thomas (1984), Bacher &

Smith (1985), Sawyer & Winter (1987), Wallace & Balint (1987), Wilkinson &
Lazos (1987), Bechert & Bartenwerfer (1989), Choi (1989), and Vukoslaveevi6 et al.

(1992), to name a few. Nitschke (1984), Liu et al. (1990), and Nakao (1991) studied
the effects of riblets in turbulent pipe flows. Their results were in good agreement

with previous investigations of turbulent boundary-layer flows over riblets.

The mechanisms by which riblets reduce drag, however, remain poorly under-

stood. Two possible mechanisms have been proposed. The first is that the skin-

friction reduction in the riblet valleys might be sufficient to overcome the skin-
friction increase near riblet tips. The second is that riblet tips actually reduce mo-

mentum transport by impeding the cross-flow motion. Walsh & Weinstein (1978)
and Walsh (1980) designed riblet surfaces to confine the turbulent "wall bursts"

to their initial birth regions. Gallagher & Thomas (1984) suggested from a flow

visualization study that the observed drag reductions result less from a direct in-
teraction of riblets with the turbulence than from the low velocities in the bottoms
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of the grooves. Bacher & Smith (1985) observed by a flow visualization that, below
y+= yur/v = 15, the lateral movement of the streaks above a riblet surface is

substantially less than the lateral movement observed above a flat surface. They

suggested that the secondary vortices generated at the riblet peaks weaken the

well known near-wall streamwise vortices and inhibit the spanwise concentration

of low-speed fluid into streak formations. Wallace et al. (1987) reviewed the ex-

isting experimental data and proposed that riblets shield the surface from much

of the turbulent momentum transport, resulting in smaller velocity gradients on

the bounding surface. Robinson (1988) studied the effects of riblets on turbulence

in a supersonic boundary layer. He hypothesized that riblets reduce skin friction

by impeding the cross-stream flow necessary to replace the near-wall fluid that is

ejected during turbulence production events. Bechert & Bartenwerfer (1989) in-

troduced a so-called "protrusion height" for different types of riblets and related

it to the ability of riblets to impede the cross-flow. Choi (1989) indicated that the

restriction of spanwise movement of the longitudinal vortices is a prime mechanism

for turbulent drag reduction.

Choi et al. (1991) studied the effect of riblets in fully developed laminar channel
flows in order to investigate whether the skin-friction reduction in the riblet valley

is sufficient to compensate for the skin-friction increase in the region of the tip.

They showed that drag reduction is not obtained in the laminar channel flow even

though the wall-shear rate on most of the riblet surface was smaller than that of

the corresponding flat channel flow.

Effects of riblets on turbulence statistics have been reported by several authors.

These include an upward shift in the log-law velocity profile due to an increase

of viscous sublayer thickness, a displaced virtual origin of the wall, a reduction of

turbulence intensities and Reynolds shear stress, a decrease of momentum thickness,

an increase of the mean streak spacing, little change in the skewness and flatness

factors of the streamwise fluctuating velocity, and limited changes of the mean

velocity and turbulence quantities in the inner regions of the boundary layer.

The reported changes in turbulence statistics are not conclusive, however, and

no clear picture of the drag reduction mechanism set up by riblets has emerged.

The difficulty in measurement of velocity fields near riblets and the modest change

in skin friction and turbulence statistics have hampered efforts tc understand the

mechanics of drag reduction.
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In recent years, numerical simulations of turbulent flows have become an im-

portant tool for studying the basic physics of turbulence (Rogallo & Moin 1984).

Kim et al. (1987) performed a direct numerical simulation of a turbulent channel

flow. A large variety of turbulence statistics were computed and compared with

the existing experimental data at comparable Reynolds numbers. Jimenez & Moin

(1991) performed direct numerical simulations of unsteady channel flow at low to

moderate Reynolds numbers on computational boxes chosen small enough so that

the flow consists of a doubly periodic array of identical structures. The goal of

their work was to isolate the basic flow unit, to study its morphology and dynam-

ics, and to evaluate its contribution to turbulence in fully developed channels. They

showed that the near-wall turbulence statistics and presumable flow mechanisms

in the minimal channel are in good agreement with the "natural" channel.

The objective of this work is to perform direct numerical simulations of turbu-

lent flows over riblets, to analyze the resulting flow database, and to educe the

mechanism of drag reduction by riblets. Such an understanding can potentially

lead to the design of riblet configurations that give even higher drag reduction. In

PART III we describe the results of these simulations and our observations on the

drag reduction mechanism. The computed results are compared extensively with

available experimental data. The computational domain and grid spacing are de-

scribed in chapter 2, followed in chapter 3 by the numerical method developed for

complex geometries. Chapter 4 describes the drag variation due to riblets and the

virtual origin of the wall. Turbulence statistics are reported in chapter 5. Modified

turbulent structures and mechanisms of drag reduction by riblets are presented in

chapter 6, followed by a brief summary in chapter 7.
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CHAPTER 2

COMPUTATIONAL DOMAIN AND GRID SPACING

The flow geometry and coordinate system are shown in figure 1. The upper

wall is a flat plate, whereas the lower wall is a plate with riblets. Fully developed

turbulent flow over riblets is homogeneous in the streamwise (xj) direction, and

periodic boundary conditions are used in the streamwise (xl) and spanwise (x3)

directions. The no-slip condition is applied at both walls. The simulation imposes

a constant instantaneous volume flux in the streamwise direction,

Q = uldA = 2 AcUi,

where Ac = L- 2Lz3 is the cross-sectional area, and U1 is the centerline velocity of

a laminar parabolic profile with the same volume flux. The computation is carried

out for a Reynolds number of 4200 based on the laminar centerline velocity U1 and

the channel half-width 6 (= Lz2/2); i.e.

3Q = UlbRej =4,L---=
4VLZ3  V

This Reynolds number corresponds to a Reynolds number of about 180 based on

the wall-shear velocity of the flat plate, ury. Unless otherwise stated, wall units

of flow quantities are based on the wall-shear velocity of the flat plate. For the

Reynolds number considered here, the computational box is chosen to be a minimal
flow unit of Jimenez & Moin (1991) (see chapter 1); the streamwise and spanwise

computational periods, L,1 and LX3 , are ir6 and 0.2891r6, respectively (roughly 570

and 160 wall units).

A uniform mesh with spacing Ax+ ; 35 is used in the streamwise direction. This
streamwise spacing is rather coarse, however, for comparison the calculations of

flows over both riblets and flat surface will be carried out with the same resolution.

A non-uniform mesh of 129 points with hyperbolic tangent distribution is used in

the wall-normal direction. The first mesh point away from the flat wall is at x+
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Case 9/6 S+ h+ a N.,x N__ x N1, A
A 0.2270 40 20.0 -450 16 x 129 x 128 1.28

B 0.2270 4 16 x 129 x 128 1.2
C 0.1135 20 10.0 4° 16 x 129 x 256 06

D 0.1135 20 17.3 60- 16 x 129 x 256 0.64

t Nz1 is the number of grid points in the xi direction.

Table 1. Parameters for the simulations of turbulent flows over riblets.

0.1, and the maximum spacing at the centerline of the channel is 8 wall units. A

non-uniform orthogonal mesh developed by Bechert & Bartenwerfer (1989) is used

in the wall-normal and spanwise directions; the non-uniform mesh is distributed

using a conformal mapping such that the shear force of each numerical cell on

the riblet is constant when the mean-flow distribution is a uniform Couette flow

very near the riblet. An extensive grid refinement study was performed to insure

adequate resolution. Thirty-two grid points on each riblet surface are necessary to

resolve the high shear rates near the riblet tips. Doubling the number of mesh points

in the spanwise direction changes the drag on the riblet surface by less than 1%.

Insufficient grid resolution in the spanwise direction results in an underestimation

of the skin friction as observed by Launder & Li (1989). The spacing between

adjacent grid points far above the riblet surface, Ax appromately 1 wall unit

in the present calculation. An example of the computational mesh near riblets in

a cross-flow plane is shown in figure 2.

We have tested four riblet configurations: riblet spacings of 20 and 40 wall units

and ridge angles a of 450 and 600. A detailed description of the parametric study

is shown in table 1. The results from cases A - D near the riblets are compared to

those near the flat wall.
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FIGURE. 2. Computational mesh near riblets in the case of s+ • 20 and a = 450. A
non-uniform mesh of 129 points with hyperbolic tangent distribution is used in the
wall-normal direction, and thirty-two grid points are used on each riblet surface.
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CHAPTER 3

NUMERICAL METHODS

The governing equations for an incomipressible flow can be written in the follow-

ing form

aui a 49P 1 a a+t ---- "uiuj -- j- + -ui, (3.1)
X Oxi ReXix j O

S=0, (3.2)

where xi are Cartesian coordinates, and ui are the corresponding velocity compo-

nents. All variables are non-dimensionalized by the channel half-width 6 and the

laminar centerline velocity U1. In these units, the value of the laminar spanwise

vorticity magnitude at the flat channel wall is Iwz I = 2. Rej denotes the Reynolds

number, defined as Rel = Ul6/v.

Equations (3.1) and (3.2) are written in a conservative form in generalized coor-

dinates as

Oqi
+ N(q) = -G 2 (p) + L'(q) + L'(q), (3.3)

D'q' + 1 q2 + q3  , (3.4)

where q = (qiq 2 ,q 3 ), N' is the convection term, G'(p) is the pressure gradi-

ent term, L' and L' are the diffusion terms without and with cross derivatives,

respectively, and Di is the divergence operator. Here, we introduce generalized

coordinates for the wall-normal and spanwise directions (i.e., (x2, x3) - (r72, 773)),

and use a Cartesian coordinate for the streamwise direction (171 = Xz). The q"s

are volume fluxes across the faces of the cells, which are equivalent to using the

contravariant velocity components on a staggered grid multiplied by the Jacobian
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of the coordinate transformation, J (figure 3). Using this choice, the discretized

mass conservation can be easily satisfied (Rosenfeld et al. 1991). The terms in

equation (3.3) are (the summation convention applies),

fori= I1,

N 1 - 0 1q1 + 0--N-' q q + - a7"f i qs 1•
0771077 I

GI(p) - p1

(3.5)
1(0 0Gq1 10"77 kJ 17

L 12 e c kj .a1; J#k,L•-Re! J01 cO3

for i = 2,3,

0_ 1i 0 mqk ,j7

N? = 7qlq i +_

Gi(p) =aiJ ar,

(3.6)
* 1 (00*o 1 i Lc 0 k imc l Al

L' R = ! _1 a 1 a + -Y ma'kja 1'cm q) j =Jk,

* 1 1 0 c k"j 0 1 mI.mL = ,-yjcj q, j # k,

where ql= ul, qJ = I uk, k = 9OxJ/0 7,k, y)Y = j (ck)-, aj k - Jcjccj,

J = IV ccm~ m and j, k,l,m =2,3.

The integration method used to solve equations (3.3) and (3.4) is based on a

fully implicit, fractional step method (appendix E); all terms in equation (3.3)

including cross-derivative diffusion terms are advanced with the Crank-Nicholson
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method in time, and are resolved with the second-order central-difference scheme

in space. A Newton method is used to solve the discretized nonlinear equations.

The suitability of a second-order central-difference scheme for direct simulation of

turbulent channel flow is discussed in appendix E.

Rapid variation of skin friction near the riblet tips requires dense grid clustering

in their vicinity; this would restrict the computational time step for numerical sta-

bility if an explicit or (as in the usual practice in direct simulation) a semi-implicit

method were used. In a separate study, we found the largest computational time

step (in wall units) which accurately predicted turbulence statistics in a turbulent

plane channel flow at Rel = 4200 (appendix E). For cases A - D (table 1), we have

used this same computational time step, AtUI/b = 0.05 (At+ - 0.4). About 7 New-

ton iterations were needed to solve the discretized nonlinear momentum equations.

The CPU time required for cases C and D was about 60 Cray-YMP seconds per time

step. For all cases, the computations were carried out for 500 non-dimensional time

units (tUl/6), which corresponds to about 4000 viscous time units (tu2 /v). Ten

thousand time steps were required for each case. The conventional semi-implicit

method would have required about a five fold increase in the required CPU time.

In PART III, X1, X2, and x3 denote the streamwise (x), wall-normal (y), and

spanwise (z) directions, respectively. The velocity notations u1, u2, and u3 in the

x, y, and z directions are used interchangeably with u, v, and w. The subscript w

indicates the value at the wall, and the superscript + indicates a non-dimensional

quantity scaled by the wall variables; for example, y+ = yur/l,, where u, = (rw/p)½

is the wall-shear velocity.
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CHAPTER 4

DRAG MEASUREMENT, MEAN-VELOCITY PROFILE,

AND THE VIRTUAL ORIGIN

For each case (A - D), random disturbances were initially imposed upon the lam-

inar mean velocity profile. Starting from these initial velocity fields, the governing

equations were integrated forward in time until the numerical solutions reached sta-

tistically steady states. These equilibrium states were identified by a quasi-periodic

behavior of the wall-shear stresses. Once the velocity field reached the statistically

steady state, the equations were integrated further in time to obtain the time av-

erage of the various statistical quantities. The total averaging time was 500 6/U!

(; 4000v/u2 ) for all results reported here. In this chapter, an overbar indicates

average over x, t, and the same spanwise locations over different riblets, and a

prime indicates perturbation from this average.

4.1 Drag measurement

The average skin-friction drag is obtained as the integral of the product of the

wall-shear stress and the differential wetted area. Note that the wetted area of a

plate with riblets is sec(a) times wider than that of a flat plate, where a is the

ridge angle of the riblet (figure 1 (b)). The drag variation due to the presence of

riblets is calculated by comparing the skin friction of the flat plate (upper wall)

and the plate with riblets (lower wall). This comparison relies upon the observation

that turbulent flow near one side of channel does not affect the skin friction at the

other. It was shown in Jim6nez & Moin (1991) that the correlation coefficient

between the shear histories at the two walls of a symmetric channel is always small,

Icorrn :_ 0.15, indicating that the intermittent behavior acts independently at each
wall.

The instantaneous plane-averaged drags of the flat surface, Df, and of the riblet

surface, Dr, are computed with
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Case s+_h+_a_ resent studyt Walsh (1982)t
A 40 20._045 + 27o + 3%
B 40 34.6 60U +12% +117*
C 2010.0 450 - 5% - 2%

D 20 17.3 600 - 6% - 4%_*

I + and - denote the drag increase and decrease, respectively.

* Data were obtained from the case s+ = h+.

Table 2. Drag variation for each riblet configuration.

Djf p f -udAf =p(a fD~ A T -n d5A7 y-• f!

(4.1)

f Ou (Ou\
Dr = p -n-dAr kY/r Af,

where n is the coordinate normal to the surface, and Ar and Af denote the wetted

areas of the riblet and flat surfaces, respectively; Ar = Lx, x Nr s sec(a) and

Af = Ar cos(a) = Lxj x Lx3. Here, Nr is the number of riblets in the computational

domain; Nr = 4 and 8 for the cases s+ = 40 and 20, respectively.

Figure 4 shows the time history of the average wall-shear rates, (Ou/Oy)* and

(Ou/Oy)*, for the case s+ = 20 and a = 60'. Stochastic and intermittent behaviors

of the wall-shear rates are clearly discernible. This intermittency is due to the lim-

ited size of the computational box in the (x, z) plane and the correspondingly small

statistical sample of near-wall events. Clearly further averaging in time is required.

The histories of plane- and time-averaged wall-shear rates, i.e. 1/t fo(Ou/Oy)*(r)dr

and 1/t fo(au/Oy)*(r)dr, are also shown in figure 4. The drag reduction by the

riblets is clearly evident.

Table 2 shows the drag increase or decrease for each riblet configuration studied.

Also given are the experimental results of Wa1sh (1982) for similar riblet geometries.

The error bounds in Walsh's drag measurements were reported to be about ±1%.

Error bounds for statistical sampling errors for the present drag measurements

were obtained by comparing the wall-shear rates of ýhe two flat wails in a plane
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channel simulation; the values of averaged wall-shear rates should be identical with

sufficient time averaging. After averaging over 500 non-dimensional time units

(tU1/6), remaining fluctuation was about ±2%. Thus, the data in table 2 show

a reasonable agreement in the drag variation between the present study and the

experimental data.

4.2 Mean-velocity profile and origin of the wall

Figure 5 shows the variation of the mean velocity in the transverse plane. No

apparent spanwise variation of the mean velocity is found above y/ 6 - -0.9 in the

case s+ - 20 or above y/.5 ; -0.8 in the case s+ - 40. Note that the midpoint

of the riblet valley and tip corresponds to y/ 6 = -1 (figure 1 (b)). The spanwise

variation of the mean velocity occurs only very near the riblets where, at a given

y, the mean velocity above the riblet valley is larger than that above the riblet

tip. These observations have also been reported in experimental (Hooshmand et al.

1983, Benhalilou et al. 1991 and Vukoslav~evi• et al. 1992) and analytical (Bechert

&Bartenwerfer 1989) studies.

The lack of spanwise variation of the mean velocity above a certain y-location

suggests the use of a virtual origin. The virtual origin for riblets is defined as

the location yo of an imaginary flat surface which has the same drag as the riblet

mounted surface and matches the riblet velocity profile above the viscous sublayer.

For the case of the smooth wall, the virtual origin is located at the surface.

Definitions of the virtual origin and the friction velocity at that position are
useful for comparison of the results with the flat plate data. There have been

four methods used to evaluate the virtual origin of the riblet wall: (1) using a

modified Clauser's method (Hooshmand et al. 1983), (2) using a measured linear
velocity profile inside the viscous sublayer (Hooshmand et al. 1983), (3) using a

velocity defect profile above the inner region (Choi 1989), and (4) using a conformal

mapping, assuming that a linear velocity region exists inside the viscous sublayer

(Bechert & Bartenwerfer 1989 and Luchini et al. 1991).

Figure 6 shows the wall-shear rate and the contribution to the drag as a function
of the spanwise position along the riblet for all configurations tested. The wall-shear

rate at the riblet surface is defined as Ofi/On(z) = fT f6 'ru (x, z,t) dxdt.
The wall-shear rate over most of the riblet surface is smaller than that of the
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corresponding plane turbulent channel flow. In cases with a = 450, the wall-shear

rates near the tip and valley regions are nearly identical regardless of riblet spacing

(it has been shown by Moffatt & Duffy (1980) and Choi et al. (1991) that, when

the convection terms of equation (3.1) are negligible, local similarity solutions and

asymptotic behaviors exist near corners and the velocity distributions very near

corners (tip or valley) are governed mostly by the angle of the corner). However,

near the middle of riblets, the wall-shear rate of riblets with s+ -, 40 is noticeably

higher than that with s+ ;, 20. Riblets with ai = 600 show the same trend. This

difference in the wall-shear rate near the middle of the riblet determines the net

performance of riblets of a given spacing. Note that the integration of the curves

in figure 6 (b) gives the drag on the riblets.

Time- and plane-averaged drag of the riblet surface, Dr, is obtained by

Dr = Dr dt =p A (4.2)

where Dr is defined in equation (4.1). The wall-shear velocity u*, at the virtual

origin is defined by

(a) (4.3)
r

The wall-shear velocities defined by equation (4.3) for each riblet configuration are

shown in table 3. Before exploring the four different methods described previously

for obtaining the virtual origin, consider plots of the mean-velocity profiles, normal-

ized by the local wall-shear velocities u,, = v/7v'aK/On, at various points along the

perimeter of the riblet surface (figure 7). Significant downward shifts in the log-law

are obtained near the riblet tip, whereas significant upward shifts are obtained near

the riblet valley. Note that this plot is normalized by the local wall-shear velocity,

not by u*.

In most experimental studies, the location of the virtual origin is taken to be

the riblet tip, valley, or the midpoint between the tip and valley. Figure 8 shows

the variation of the mean-velocity profile with different choices of the virtual origin

for cases with a = 600. Here, the wall-shear velocity is chosen to be u* (equation
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Case u*P/U? Pt #I tip+F F1 F44
A 0.0435 11 0.12 1 0.02 5.4 -0.1

B0.0456 0 . -1.
S .418 . 0.19 0. 1.0

UD 0.0414 0.6 0.33 1-00 . 09 +.

b For the flat plate, Ur,/U! = 0.0430 and Uc/ur, = 18.1, where Ue is the centerline

velocity.

t From Bechert & Bartenwerfer (1989). yo/ 6 = -1 + fis/6.

t From equation (4.4). yo/6 = -1 + Ps/l. Error bounds for )3 are obtained noting a

10% variation of the location y+. Note that yo/ 6 = -1 corresponds to the midpoint

between the riblet tip and valley.

t/p+ = (Ytip - yo )u* /v. Yo is obtained from equation (4.4).

1 From Gaudet (1987). See equation (4.6).

10 From equation (4.6). yo is obtained from equation (4.4).

Table 3. Wall-shear velocity and location of the virtual origin for each riblet con-

figuration.

(4.3)). This plot does not contain the velocity inside the viscous sublayer because of

the spanwise variation of the mean velocity there. The slope of the log-law above

the riblets is little changed as compared with the flat plate profile. In the case

s+ ,,• 20, the intercept of the log-law with u+ = y+ is farther away from the wall

regardless of the location of the virtual origin (when the local wall-shear velocity

was used, both upward and downward shifts in the log-law were obtained (figure

7)). This upward shift in the log-law has previously been observed in drag-reduced

flows such as large-eddy breakup devices (Bandyopadhyay 1986 and Nguyen et al.

1987), riblets (Hooshmand et al. 1983 and Choi 1989), and polymers (Lumley 1973

and Virk 1975), and it may be considered the result of the increase of the viscous

sublayer thickness. On the other hand, in the case s+ ; 40, the location of the

intercept is decreased, indicating a decrease of the viscous sublayer thickness. Cases

with a = 450 show the same trend (figure F.2).

The four methods of evaluating the virtual origin of the wall discussed earlier

are based on the existence of either a linear velocity region or a logarithmic region

near the surface. The logarithmic region tor the present calculation is quite narrow
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(figure 8), so the application of methods (1) and (3) will not give an accurate

estimation of the location of the virtual origin. Method (2) is also not useful since

the location of the virtual origin depends on the baseline of the mean velocity (see

figure 3 in Hooshmand et al. 1983). Bechert & Bartenwerfer (1989) determined the

location of the virtual origin of the wall, yo, using a conformal mapping, assuming

that a linear velocity region exists inside the viscous sublayer; using their method,

for a = 45', yo/b = -1 + 0.11s//, and for a = 600, yo/b = -1 + 0.26s/6. The

mean-velocity profile based on this virtual origin is shown in figure 8. Again, an

upward shift in the log-law is evident in the case a+ •. 20. However, the weak

point of the method of Bechert & Bartenwerfer (1989) is that it can not be used

for flows for which the drag is increased because in such cases the riblet surface is

not completely immersed in the viscous sublayer.

It should be mentioned that all the existing methods of evaluating the virtual

origin are based on changes in the mean streamwise velocity rather than changes

in turbulence structure. Since an upward shift in the log-law is closely related to

the balance between turbulent energy production and viscous dissipation (Lumley

1973), measurement of changes of turbulent structure above the wall may be an-

other criterion to determine the virtual origin. The maximum turbulent kinetic

energy production on the flat plate side occurs at y+ - 13, as does the maximum

intensity of the streamwise velocity fluctuations. One may therefore define the

virtual origin from

Y +n ý13 = (Ym - Y 0)u

where ym and Yo are the locations of the maximum turbulent kinetic energy pro-

duction (or the maximum streamwise velocity fluctuation intensity) and the virtual

origin, respectively. Therefore, the location of the virtual origin is

YoYm 13v (4.4)
r.'

The location of the virtual origin yo may be obtained from the profile of the stream-

wise velocity fluctuation intensity (figure 9) for each riblet configuration, and is tab-

ulated in table 3, together with results by Bechert & Bartenwerfer (1989). There

is a rough agreement between the two methods. It can be clearly seen that, as the
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ridge angle increases, the virtual origin moves closer to the riblet tip. The location
of the riblet tip, ytip = (Ytip - yo)Ut Iv, is tabulated in table 3, where Yo is obtained
from equation (4.4). The riblet surfaces with s+ ; 20 are completely immersed in
the viscous sublayer.

The mean-velocity profiles based on these virtual origins for cases with a = 600
are shown in figure 8. The mean-velocity profiles by the method of Bechert &
Bartenwerfer (1989) and equation (4.4) are nearly identical in the log-law region.
The upward and downward shifts in the log-law are clearly seen for drag-decreasing

and drag-increasing cases, respectively. Cases with a = 450 show the same trend

(figure F.2).

The velocity profile in the wall region of a turbulent boundary layer is described

by

1 In Ur, Y + B, (4.5)
UT K V

where K = 0.4 and B = 5.5. For rough surfaces, the velocity profile has been de-
scribed by equation (4.5) with the addition of a function F of the surface roughness
parameter (Nikuradse 1933 and Schlichting 1936). This modified representation of
the mean-velocity profile has been used to model the mean flow over riblets by
Sawyer & Winter (1987), Gaudet (1987) and Tani (1988):

i= 1 In (y-..o) + B + F. (4.6)

Since u* and yo are given in table 3, the constant F for each riblet configuration

may be obtained and is listed in table 3. It is clear from table 3 that F is positive for
drag-reducing cases and is negative for drag-increasing cases. Values of F obtained
in this study are compared with those by Gaudet (1987) in table 3; except for case

A, good agreement is found between the two results.
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FIGURE 5. For caption see the following page.
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s+ = 40 S+ = 20

(b)

FIGURE 5. Mean-velocity profiles for cases with a = 600. (a) One-dimensionei view
with different spanwise locations; (b) contours of the mean velocity in the (y, z)
plane. The contour levels normalized by U1 range from 0 to 0.75 by incrtmrents
of 0.025. The plot domain extends from the riblet surface to the centerline of the
channel.
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CHAPTER 5

TURBULENCE STATISTICS

In this chapter turbulence statistics from the calculations of turbulent flow over

the riblets are presented. Flow variables on the side of the channel with the riblets

(lower wall) are averaged only in x, t, and the same spanwise locations over different

riblets, while those on the side of the flat plate (upper wall) are averaged in x, z and

t. Results in both global and wall coordinates are presented. In global coordinates,

velocities are normalized by the centerline velocity Uc, and lengths are normalized

by the channel half-width 6. When flow variables are plotted in wall coordinates,

velocities are normalized by either u , (for the flat plate) or u* (for the plate with
riblets), and = - y/V and y+ = u,(y - yo)/v. The virtual origin, yo, and

the wall-shear velocity at that location, *Ur, are obtained from equations (4.4) and

(4.3), respectively. The changes in the absolute magnitudes of flow statistics are

more evident in global coordinates, whereas wall coordinates are better suited for

the structural changes of flow variables. In this chapter, we present the results of

cases with a = 600 (s+ - 20 and 40). Riblets with a = 450 showed nearly the

same trend (appendix F).

5.1 Turbulence intensities

Turbulence-intensity profiles at various spanwise locations are shown in figure 9

and contours of turbulence intensities in the cross-flow plane are shown in figure 10.

Significant variations of the turbulence intensities occur only very near the riblets in

the case a+ ; 20, while, in the case s+ ; 40, effects of the riblets penetrate further

into the channel (figure 10) and spanwise variations of the normal and spanwise

components of the turbulence intensity extend even into the region where there is

no noticeable spanwise variation of the mean velocity (figure 5) or the streamwise

velocity fluctuations (figure 10 (a)). This indicates that the cross flow is more

sensitive to the presence of riblets than is the flow in the streamwise direction.

Reduction of all three components of turbulent intensity by the riblets is evident

in a drag-reducing configuration (s+ ; 20) (figure 9). Note that the maximum wall-

normal and spanwise root-mean-square velocity fluctuations are reduced by 10%,
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while only a 5% reduction is obtained in the maximum streamwise root-mean-

square velocity fluctuations. Turbulence intensities increase near the riblets in the

case s+ z 40 (a drag-increasing configuration). The streamwise component of the

turbulence intensity is reduced by 15% above the riblet valley and increased by 5%

above the riblet tip as compared to the flat plate case. However, the maximum

values of the other two components are increased by 5% across the entire span.

Reductions of the streamwise velocity fluctuations by riblets have been observed

in several experiments (Walsh 1980, Hooshmand et al. 1983, Nitschke 1984, Jo-

hansen & Smith 1986, Choi 1989, Benhalilou et al. 1991, Wilkinson & Lazos 1991

and Vukoslav~evi• et al. 1992). Bacher & Smith (1985) reported an increase of the

streamwise velocity fluctuations, which is clearly contradictory to the present results

and other experimental results. There is limited data available for the normal and

spanwise velocity fluctuations. Walsh (1980) found a small reduction in the normal

velocity fluctuations. Benhalilou et al. (1991) used riblets with s+ = 2h+ z 30 and

observed a large reduction of the streamwise and spanwise velocity fluctuations in

the vicinity of the riblet valley and a significant increase close to the riblet tip. The

behavior of the streamwise velocity fluctuations in their work is quite similar to

the present results for drag-increasing configurations with s+ = 2h+ & 40 (figure

F.3 (a)) and s+ = 1.155h+ ,• 40 (figure 9 (a)). As drag was not measured in their

study, the increase of the streamwise velocity fluctuations probably resulted from

having a drag-increasing configuration. Reduction of the spanwise velocity fluctu-

ations above the riblet valley, as seen in the results of Benhalilou et al. (1991), was

not obtained in the present study for drag-increasing configurations, however. The

spanwise distributions of the mean velocity and turbulence intensities obtained by

Benhalilou et al. (1991) also indicate considerable asymmetry with respect to the

riblet valley. Vukoslav~evi6 et al. (1992) measured streamwise velocity fluctuations

above riblets with s+ = 2h+ -, 35 and found a decrease in magnitude across the

entire span. The present study shows that the turbulence intensity above riblets is

modified differently depending upon whether the configuration is drag-reducing or

drag-increasing. Hence, measurements of turbulence intensities should be accom-

panied by drag measurements in order to properly correlate these quantities.

Turbulence intensities normalized by either ur! (for the flat plate) or u* (for the

plate with riblets) are shown in figure 11. The y+ locations of the peak streamwise
velocity fluctuations above both the flat plate and the riblets are nearly identical
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due to the particular choice of the virtual-origin location (equation (4.4)). Profiles

of Vrms and Wrms are also nearly identical. The viscous sublayer is significantly

modified by the riblets in all configurations.

5.2 Reynolds shear stress

The Reynolds shear stress -u'vt, normalized by the mean centerline velocity, is
shown in figure 12 (a). In the case s+ ; 20, the maximum Reynolds shear stress

above the riblets is reduced by 12% as compared with that above the flat plate,
and there is negligible spanwise variation of the Reynolds shear stress near the

riblets. Walsh (1980) reported a maximum reduction of 16% in the Reynolds shear
stress above riblets. Pulles et al. (1989) showed that the Reynolds shear stress

is noticeably reduced through the log-law region for a riblet mounted surface. In

the case s+ ; 40, however, the maximum Reynolds shear stress above the riblets

is significantly increased above the riblet tip and is nearly unaffected above the
riblet valley as compared to the flat plate side. There is also substantial spanwise

variation of -uIv' near the riblets in this case.

The Reynolds shear stress above the riblets, normalized by the wall-shear velocity
*, is shown in figure 12 (b). Also shown is the Reynolds shear stress above the

flat plate. In the case s+ ; 40, peak locations and magniitudes of the Reynolds

shear stress above the riblet tip and valley differ greatly from the flat plate profile.

However, in the case s+ - 20, there is a good agreement.

The total shear stress, -U-v + v O/e/Oy, above the riblets is shown in figure 13.

Taking the average of the streamwise momentum equation over time and space (x)

gives

+ V-) + -(-U-i + V-) constant. (5.1)

When the spanwise variations of the mean velocity and shear stresses are negligible

compared with their normal variations, the total shear stress becomes linear across

the channel. The computed result away from the riblets clearly indicates that this

is indeed the case. However, a linear profile is not obtained very near the riblets

since the spanwise variations of -U--i and Oai/8z are not negligible (figures 5 (b)

and 10). This deviation from linearity illustrates the zone of influence of the riblets
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in the channel. As expected, the effects of the riblets penetrate further into the

channel in the case s+ ; 40.

5.3 Vorticity

There is no known experimental data on vorticity fluctuations above riblets.

Root-mean-square vorticity fluctuations normalized by the mean centerline velocity

and the channel half-width are shown in figure 14. All three vorticity fluctuation

components show maximum values at the riblet tip. Significant spanwise variations

of the vorticity fluctuations occur only very near the riblets in the case s+ ; 20,

while, in the case 8+ - 40, there is further penetration into the channel.

Reductions of all three components of the vorticity fluctuations by the riblets

occur in the drag-reducing configuration (s+ z 20). The local maximum streamwise

vorticity fluctuation above the riblets is reduced by 12% as compared with that

above the flat plate. The local maximum of the normal vorticity fluctuation is

reduced only marginally. In the case s+ - 40, vorticity fluctuations are increased

above the riblets. It is interesting to note that, near the local maximum (y/b ;,

-0.8), w_ above the riblet valley is larger than that above the riblet tip, but the

converse is true for wy and Wz.

Root-mean-square vorticity fluctuations normalized by the wall-shear velocity

ur are shown in figure 15. As described in sections 5.1 and 5.2, use of the virtual

origin yo and the wall-shear velocity u* collapses the peak locations as well as the

magnitudes of the vorticity fluctuations for the case s+ ; 20 but not for the case
s+ •, 40. The local maximum wx occurs at y+ z 20 regardless of the presence of

the riblets, which suggests that the center of the streamwise vortex is located on

the average at y+ -, 20 (Kim et al. 1987). It is clear from figure 14 (a) that, in the

case s+ ; 20, the streamwise vortices above the riblets are weakened.

5.4 Quadrant analysis

Quadrant analysis of the Reynolds shear stress provides detailed information on

the contributions to the total turbulent energy production from various combina-

tions of positive and negative ut and vi (Willmarth & Lu 1972 and Kim et al. 1987).
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The total turbulent energy production Pk is

Pk =--ij,

OX O- zy (5.2)

-I Oui aii - / ~Ot, - (i Ofi
ý7 -Oz- 7x ~ -z- -8Y

where Sij is the mean strain rate tensor. For the present study, Oii/Ox = Ov/Ox -

O@I/Ox = 0 due to flow homogeneity in the streamwise direction.

Turbulent kinetic energy k and turbulent energy production Pk are shown in

figures 16 and 17. Maximum turbulent kinetic energy is reduced by 10% in the

case s+ - 20, but, in the case s+ ; 40, it is increased above the riblet tip and

is decreased above the riblet valley. The turbulent energy production exhibits the

same behavior as the turbulent kinetic energy. In the case s+ ; 20, the peak of

the turbulent energy production occurs at y+ - 13, as mentioned in section 4.2.

However, in the case s+ : 40, the peak location varies slightly. All terms except

--u tvY Oi/Oy in the right hand side of equation (5.2) are negligible away from the

riblets. Very near the riblets these terms are not negligible, but are still an order

of magnitude smaller than -u tv' Oaf/Oy.

Since most of the turbulent energy production comes from -u'v'Oii/Oy, we re-

strict our quadrant analysis to the Reynolds shear stress -uYv. The analysis divides

the Reynolds shear stresses into four categories according to the signs of u' and v'.

The second- (u' < 0 and v' > 0; ejection) and fourth- (u' > 0 and v' < 0; sweep)

quadrant events contribute to positive production, and the first- (u' > 0 and v' > 0)

and third- (u' < 0 and v' < 0) quadrant events contribute to negative production.

The contributions to the Reynolds shear stress from each quadrant, normalized

by the mean centerline velocity, are shown in figure 18. The sum of the values
at a position y from all four quadrants is the mean Reynolds shear stress at y.

For all cases considered, the ejection event is dominant away from the wall, and
the sweep event is dominant in the wall region. Regardless of the riblet spacing

and lateral position about the riblet, the Reynolds shear stresses from the first
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and third quadrant events are nearly unchanged except for a small outward shift

of the data. The maximum values from the first and third quadrant events are

-u-v•/U2 - -0.0005 for all cases considered here (figure 18 (a) and (b)). However,

the Reynolds shear stresses from the second and fourth quadrant events are changed

by the riblets. In the case s+ ; 40, the maximum value of the Reynolds shear stress

from the ejection (second quadrant) event is reduced above the riblet valley but is

substantially increased above the riblet tip. The Reynolds shear stress from the

sweep (fourth quadrant) event is also significantly reduced very near the riblet valley

but increased very near the riblet tip. However, there is no noticeable difference in

the fourth quadrant event above y/6 ;: -0.7 (figure 18 (a)).

In the case s+ ; 20, there is no spanwise variation of the Reynolds shear stress

except very near the riblets. Hence, the profiles above the three different span-

wise locations show essentially the same result except very near the riblets. The

maximum values of the Reynolds shear stress from the second and fourth quadrant

events are reduced, while those from the first and third quadrant events are almost

unchanged (figure 18 (b)), indicating that only the positive Reynolds-shear-stress

producing events are changed by the riblets. Accordingly, as expected the riblets in-

tensify the positive Reynolds-shear-stress producing events in a drag-increasing con-

figuration, while they mitigate the positive Reynolds-shear-stress producing events

in a drag-reducing configuration.

The contribution to the Reynolds shear stress from each quadrant, normalized

by the local mean Reynolds shear stress, is shown in figure 19. This plot shows

the fractional contribution from each quadrant event to the local mean Reynolds

shear stress. Above the flat plate, the contributions from the ejection and sweep

events are about the same at y+ • 10. In the case s+ ; 40, the location at which

the contributions from the ejection and sweep events are equal varies significantly.

However, in the case s+ ; 20, this location is fixed at y+ % 10, which once again

indicates the proper choice of the virtual origin yo as well as the wall-shear velocity

u* at yo. The fractional contribution from each quadrant is nearly the same as that

for the flat plate above y+ z 20. The sharp increases in the normalized Reynolds

shear stress from each quadrant near the riblet tip and the centerline in figure 19

simply reflect the small mean Reynolds shear stress at those locations.

Pulles et al. (1989) found from a quadrant analysis at y+ = 38 that there was a

lower fractional contribution from the second quadrant and a higher contribution
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from the fourth quadrant above the riblets compared to those above the flat plate,

and they concluded that ejections were weaker above the riblet and sweeps were

much stro",-9•r. However, a higher fractional contribution from fourth-quadrant

events does not imply stronger sweep motions above the riblets because the absolute

:Jlagnitude if the Reynolds shear stress from the fourth quadrant events above the

riblets may still be lower than that above the flat plate. Our results show that this

is indeed the case (figures 18 and 19).

5.5 Higher-order statistics

The skewness and flatness factors of the velocity fluctuations are shown in figures

20 and 21. The skewness of wl should be zero away from the riblets because of the

reflectional symmetry of the flow statistics. The skewness and flatness factors are

nearly unchanged above y+ ; 30, but are significantly changed near the riblets.

The skewness of u' is decreased near the riblet valley, while it is increased near the

riblet tip. For 10 < y+ < 15, in the case s+ ; 40, the skewness of u' is increased

across the entire span. The skewness of v/ reaches large negative values near the
riblet valley and large positive ones near the riblet tip.

The flatness of u' is decreased very near the riblet valley and increased near the

riblet tip. However, the flatness of v' is significantly reduced above both riblet tip

and valley, indciating that the normal velocity above the riblets is less intermittent

than in the flat plate case. The flatness of w' is nearly unchanged in the case

8+ ; 20, while it is slightly reduced in the case s+ s 40.

Hooshmand et al. (1983) found that riblets have no effect on the skewness of the
velocity fluctuations. Coustols & Cousteix (1989) reported that the skewness and

flatness of the streamnwise velocity fluctuations were reduced near y+ = 5, while

there were no modifications for y+ > 20 (y+ = 0 corresponded to the riblet tip in

their data). On the other hand, Tardu & Truong (1991) found that the skewness

and flatness of u' were increased for y+ < 15. As shown in figures 20 (b) and

21 (b), in the presence of riblets there is a significant spanwise variation of the

skewness and flatness of u' below y+ s 10. Hence, the spanwise locations of their

measurements should have been indicated to clarify this issue. Vukoslav~evi6 et al.

(1992) reported that the skewness and flatness of u' near the riblets significantly
increase above the riblet valley and decrease above the riblet tip, which apparently
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contradicts the present results. However, this discrepancy is due to the fact that

each of their profiles was vertically shifted to match the origin of the flat wall. When

replotted with the same coordinates used here, the -ame conclusion is drawn: i.e.,

at a given y+ (< 10), the skewness and flatness of u' are increased above the riblet

tip and decreased above the riblet valley.
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FIGURE 12. Reynolds shear stress for cases with a = 600: (a) in global coordinates;
(b) in wall coordinates. ---- , Above the riblet valley; ........ , above the riblet tip;

above the fiat plate.
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FIGURE 14. Root-mean-square vorticity fluctuations normalized by the mean cen-
terline velocity U, and channel half-width 6 in global coordinates for cases with
a = 600. (a) Streamwise; (b) normal; (c) spanwise vorticity fluctuations.
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199



_ _ _ _ _ _ _ _ _ _ _0 - -J-

'I i 
.5 i

e.

. 9
/.5

I ! 
' i

1i3cii

'q -4.)2

," . ) i

------- 
a,

;0i

-200

;'. a .;
:/ :./

// ., '

* ii' ' .6

3 •
, 9

'5 - , ...,4.

'.. . ... . . . . .. . . . . . . . . . .. . . = ,= , , -

2 -~ 5 2 -



p o

/! .5

., !/, a z

' • I, , , 1
"•" El ,

, I '. U

I -•I ,-
l~ii! !i l~it !i-•i

o, 0,, < , <

p o

// I :
q ;.

;5 M• /7'

1, -- •
: -]

*•0 ... I .. ".,

S.. . .. . . . . .. . . . . . . . . ... .. . ... , -- II * i ! Vi ! !

201



* 
*1.,r .l *.

* 
I:

* I U

.. . * .. . . . . . . .. . . . . . . . o. . . . . .. . . . . . . .. . . . . . . .. . . . . . . °

t I'

o -o,.o

202

a' _ _ _ _ _ '



4.0

.-- .. .-......:-..:.. ...-- ...... ab - -- --

6.4i0

:!e

* I P

,I +69,+

9- C4. . 7.

S.6 ." . -0

4) /° .

o 03

S........... . .. * I _ _ _ _ _ _ _ 1l i I I I I I4



I.h

1\

0 to 20 30 40 So so 70 so

y+

-+ 0

o to a 0 U0 50 U0 70 8U

1.3

1.0

05

-1.0

(0 to Is 30 40 so 0 70 s0

y +

1.6

420

-1.0

(a 0• to go 3 d10 SO so 70 so

y +

FIGURE 20. For caption see the following page.

204



Is

1.0 I

-- a

45

0 10 s a so a 70 a0

y+

1.5

1.0

(b) 0 U 40 00 Us 0 70 w

y +

l.a

1.0

( ) 0 10 Ui 20 40 50 U1 70 50

FIG uRE 20. Skewness factors in wall coordinates: -, above the flat plate; - - - -
above the riblet valley; ........ , above the riblet midpoint; -- , above the riblet
tip. (a) 8+ - 40; (b) s+ -, 20. y+ = (y - yo)u*,/v.

205



7

5

2

1

0 10 ao 30 40 50 so 70 so

y+

'1/
7

4

2

0
0 10 20 30 40 so so 70 so

y +

7

S

a

(a) 0 10 W0 2 40 so s0 70 so

y +

FIGURE 21. For caption see the following page.

206



7

+ +

0 10 M 30 0 so 40 7O 0

y +

7

6

a

4

() 0 10 3 W0 40 N0 so 70 so

y+

20

sI

3 _

a

11+

above th riltvlly... aoete.i.tmdpit. .. bv terbe

20



CHAPTER 6

DRAG REDUCTION MECHANISM

As mentioned in chapter 5, in the case s+ - 20, the turbulence intensities as

well as the Reynolds shear stress near the riblets are decreased. The strength of the

streamwise vortex above the riblets is also reduced (figure 14 (a)), indicating that

the downwash and ejection motions due to the streaxnwise vortices are weakened.

In this chapter, we focus on the turbulence structures above riblets by examining

instantaneous flow fields. Our objective is to elucidate the physical mechanism by

which riblets reduce drag.

Figure 22 (a) shows contours of the instantaneous wall-shear rate Ou/ON nor-

malized by U1 and 6 on the riblet surfaces for cases with a = 600. The non-

dimensionalized plane- and time-averaged wall-shear rate on the flat plate is 7.8,
and the wetted area of the plate with riblets is sec(a) times greater than that of

the flat plate. Hence, a wall-shear rate on the riblet surface that is larger than

7.8cos(a) results in an increased drag on the riblet surface over that of the flat

plate, whereas a value smaller than 7.8 cos(a) results in a decrease. The contour

line with value 7.8 cos(a) is drawn with black lines in figure 22 (a). Regions of high

wall-shear rate (red contours) can be seen not only near the riblet tips but also in

the middle of the riblets in the case s+ - 40, whereas, in the case s+ ; 20, the

regions of high wall-shear rates are restricted to the tips.

It has been shown in PART I that, in plane channel flow, local regions of high

skin friction are associated with streamwise vortices just above the wall. The sweep

motion due to these strong streamwise vortices creates regions of high skin friction

on the wall. The transverse-flow structures leading to high skin friction can be seen

in the cross-sectional views at the locations (marked with arrows in figure 22 (a))

at which the highest wall-shear rates occur. Figure 22 (b) shows cross-flow velocity

vectors (v, w) and contours of the streamwise vorticity component in the transverse

plane. Strong streamwise vortices near the riblets are present in both cases. It was

estimated in Kim et aL. (1987) from the profile of root-mean-square streamwise

vorticity in plane channel flow that the centers of streamwise vortices are located

on the average at y+ s 20, and that their average diameter is d+ % 30. Since
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the average diameter of the streamwise vortices above the wall is smaller than the

spacing of the riblets in the case s÷ z 40, the streamwise vortices can move freely

and can be found inside the riblet valleys. This exposes a larger suriace area of

the riblets to the sweep motion that they induce. On the other hand, in the case

s÷ ; 20, most streamwise vortices stay above the riblets, because their average

diameter is larger than the spacing of the riblets, and only a limited area of the

riblet tips is exposed to their induced sweep. A schematic diagram of this drag

modification mechanism is shown in figure 23. Note that even in the case of riblets

with s+ ; 40 the skin friction per unit of surface area is reduced due to the less

but still significant inhibition of streamwise vortices approaching the wetted area.

In the case s+ - 20, only a small part of the wetted surface is exposed, resulting

in a net drag reduction despite a significant increase in the wetted area.
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FpouaE 22. Instantaneous flows over the riblets with a = 600: (a) contours of
the wall-shear rate on the riblet surfaces; (b) cross-flow velocity vectors (v, w) and
contours of the streamwise vorticity in (y, z) planes.
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CHAPTER 7

SUMMARY

Direct numerical simulations of turbulent flows over riblets were carried out at

a Reynolds number of 4200 based on the centerline velocity of a laminar parabolic

profile (with the same volume flux) and the channel half-width. A fully implicit

(Crank-Nicholson), fractional step method was used for the time-advancement, and

a second-order central finite-difference method was used for the spatial derivatives.

The drags computed for each rihlet configuration were in good agreement with

the experimental results of Walsh (1982). Cases with s+ ; 20 showed a 5 - 6%

drag Yeduction, and cases with s+ ; 40 showed a drag increase.

The virtual origin of the wall was defined such that the maximum turbulent

kinetic energy production occurred at y+ - 13. As the ridge angle of the riblets

increased, the virtual origin moved closer to the riblet tip. The mean-velocity

profiles based on these virtual origins showed upward and downward shifts in the

log-law for drag-decreasing and drag-increasing cases, respectively.

Flow statistics above the riblets were compared to those above the flat plate.

Differences between the mean-velocity profiles and turbulence quantities were lim-

ited to the inner region of the boundary layer. Velocity and vorticity fluctuations

as well as the Reynolds shear stress above the riblets were reduced in drag-reducing

configurations. Reduction of the normal and spanwise velocity fluctuations above

the riblets indicated that the transverse flow near the wall was impeded by the ri-

blets, one of the drag reduction mechanisms suggested by Bechert & Bartenwerfer

(1989) and Choi (1989). Quadzant analysis indicated that the riblets intensified the

positive Reynolds-shear-stress producing events in drag-increasing configurations,

while they mitigated these (second and fourth quadrant) events in drag-reducing

configurations. The Reynolds shear stresses from the first and third quadrant events

were nearly unchanged by the riblets.

From examination of the instantaneous flow field, a drag reduction mechanism

was proposed: a certain spacing of riblets reduces viscous drag by restricting the

location of streamwise vortices above the wetted surface such that only a limited

area of the riblets is exposed to their induced downwash of high speed fluid. Only
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the tip region is exposed to high wall-shear rates in drag-reducing configurations,

whereas, in drag-increasing configurations, both the middle and tip regions are

exposed to them.
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APPENDIX A

OPTIMAL CONTROL OF WALL-BOUNDED TURBULENT FLOWS

Abergel and Temam (1990) addressed the problem of minimizing turbulence

fluctuations from the point of view of optimal control theory. We investigate the
possibility of controlling turbulent boundary layers by placing sensors at the wall
using optimal control theory. The optimal control problem for turbulent channel

flow is formulated as follows:

a Find 0 minimizing the functional (cost function)

j(M ="I' 41 1 [ (')+] + 01w+ aI v dordt, (A.1)

where the quantity inside the bracket is the square magnitude of the shear rate

at the wall (of2), and ui is the solution of the state equations (the Navier-Stokes

equations)

Oui Oui Op 1 00ui

+ Oxj axi Re Oxj Oxj
(A.2)

loui 0
Oxi

subject to the wall boundary conditions

u(x,y = ±6,z,t) = w(x,y = ±6,z,t) = 0

v(x, y = ±+, z, t) = (,,
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the initial condition u&(x, y, z, t = 0) = ui,( o, y, z), periodic boundary conditions

ui(X = O,y,z,t) = ui(z = Lzy,z,t)

ui(Xyz "= 0,t) -= ui(x,y,z = Lz,t)

p(Ax = o, y, z,t) = p(x = L,,y,z,t) + C(t) (A.4)

p(X,y,z = 0,t) = p(x,y,z = Lz, t)

dP
C(t) = -- j-(t) rLz,

dx

and the constant mass flow rate constraint

lc 0da = 0. (A.5)

Here 0 is the input normal velocity at the wall, T is a fixed (but arbitrary)

control time, and a is an arbitrary constant related to the expense associated with

the control. ujo is an instantaneous velocity field from fully developed channel flow.

C(t) is affected by the action of the control. That is, the mean pressure gradient

(or drag) can change, but the mass flow rate is kept constant. L, and L, denote

the streamwise and spanwise computational periods, respectively. The subscript w

indicates the value at the wall. a

Let (fli, ý) be an optimal pair; then, the Fr6chet differential 1 of J in the

direction of $ is given by

DiJ T 1 &0q +~q 1 Of Oq3 I dodt + a IT ý dodt

VJ-. JTJ. I! d j d t ýi W ýOy (A.6)

- 0,

When it exists, the Frichet differential of J in the direction of ý is defined by (Finlayson 1972)

1)J- g(@+ 4•)-J()
- m = lrn
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where qi is the solution of the linearized state equations with respect to 4, i.e.,

qi = (ThL/VO) $ and

Oq• O9q• oI O, 1 00Oq,
Oi+ fi o*+ 3N

Oxj axj Oxi Re jiOx3 ax1
(A.7)

Oq, _

Equation (A.7) is subject to wall boundary conditions

ql(=, Y = ,z) - q3(x, Y = ±6, z) - 0

q2(x, Y = z) 
(A.8)

the initial condition qi(X, y, z, t - 0) 0, periodic boundary conditions

qi(x = 0,y,z,t) = qi(x = Lz, y,z,t)

qi(x,y,z = 0,t) = qi(x,y,z = Lzt) (A.9)

pI(x = 0, y, z, t) = pj(x = Lx, y, z, t) + Cg(t)

pg(x, Y, z = 0, t) = pg(x, y, z = Lz, t),

and the constant mass flow rate constraintJ o =0,

where pI = (Vp/V4) 4, and CI = VClVT O.

In order to determine the Freshet derivative of J, we introduce the adjoint state

qj which is the solution of linearized adjoint state equations

04,94i ,..Uj o~ 1 a9 '04
Ot +x qj p = Oxi Re O.x Oxj

(A.10)

04i
Oxi
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subject to wall boundary conditions

1 au
i1(X,Y = ±6,Z) = •iW

42(x, Y= ±b6, z) = 0 (A.11)

43(, ,Y = ±b, z) = i-IWI

the initial condition qi(x, y, z, t = T) = 0, and periodic boundary conditions

V~ -= 0, y,z,t) = ii(x = L__,y,z,t)

V T( Y) z = 0,t) = &(xy,z = Lz,t)

P&= 0, y, z, t) = P&( = Lz, y, z, t) + (ANo2

P&(z,y,z = 0,t) = P(xy, = Lrz,t).

We obtain the following expression for the Fr6chet differential of J by substitut-

ing equation (A.11) into equation (A.6)

"=[ 4q1 + q3 ddddt + c dodt. (A.13)

On the other hand, the definition of adjoint operator for 4i is

< ji, LS(qi) > = < qi,,LS*(ji) > + B(qi,q4),

B(qi, ji) = Jm (qii + 4ijS) da, (A.14)

1 O'~i
Pj~ni + Re 8x- p

Si = qiujnj + plni -1e,
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where LS is the differential operator of the linearized state equations, LS* is the

corresponding adjoint operator, nj is the unit vector normal to boundary, and A
and g are the fluctuating parts of the linearized and linearized adjoint pressures,

respectively. The boundary terms B(qi, ji) should be zero by the definition of the

adjoint operator.

For the present problem (blowing/suction at the wall),

B 0, (A.15)

where

12  + T , 1 1 0q3
sy - S1-- Re VR ' "t

Using the above relations, we get

"vi = [1 T ( -Req 1 Sl - Rej3,3 ) + aOý I dodt

jfTj [Rep + 2qt + ackjdadt. (A.16)

If J attains its minimum at 4, then we necessarily have (DJ/VDO) • = 0 for every
Sin L2 (0, T; H), that is to say

1,0 2 Re.
+ TlPI. (A.17)

Using the continuity equation, - - we get

1 (• 01w+ L3Inw+to,
a ax 0z

Substituting the boundary conditions (A.11) of the linearized adjoint state equa-

tions into the above equation, we finally get
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C1 0 I + (A.18)+ 5i?8 ao+ .

Note that the initial condition of the linearized adjoint state is given at t = T

rather than at t = u, i.e. qi(x, y, z, t = T) = 0. This condition is Qbtuined from the

definition of the adjoint operator, i.e.,

0 Otji t f -5qjqj - qi & dt

j•T qi.dt +o 1qOqig

0o 04
S qi-•dt + qi(t = T) q(t - T) - qi(t = 0) j4(t = 0).

The boundary terms at t = 0 and T, i.e. qi(t = T) qi(t = T) - qi(t = 0) 4i(t = 0),

should disappear with a proper choice of the boundary condition of the linearized

adjoint state qi. Since qi(t = 0) = 0, we must set 4i(t = T) = 0 in order for the

boundary terms to disappear. Hence the time marching of the linearized adjoint

state can only be done backward in time from 4i(t = T) = 0. Due to this restric-

tion, one has to store all the velocity and linearized adjoint velocity fields in the

time interval [0, TI to solve both the Navier-Stokes equations and the linearized ad-

joint Navier-Stokes equations iteratively. This is impractical with current computer

resources.

We also have tested other cost functions

J2(0) = 4 I(L)2 ] drdt + j, Jf 2dodt, (A.19)

21 (Ow2 0 +

220



J3 ( T )- O 2 dodt + a 1T ] O2 dadt, (A.21)

where U is the mepn streamwise velocity. The cost functions in equations (A.19) -

(A.21) represent the square magnitude of the instantaneous streamwise shear rate,

the fluctuating spanwise shear rate, and the mean streamwise shear rate at the wall,

respectively. Following the same procedure described in this appendix, we get the

following relations derived from the first-order optimality condition for minimizing

above the cost functions

for J 1(4 1 ),

1 a a Re (A.22)

with the adjoint boundary conditions

MX y = ±6 )= 1O
2 oz, (A.23)

42(Z,'y = ±=6, Z)= 43(x, y = ±6, z) = 0,

for J 2 (0 2 ),

- 1 0oO& Re-I
ý2 = I , [pz W I + Re"Al (A.24)

with the adjoint boundary conditions

xy= ±6,z) = 42(x,Y = ±6,z) = 0

Z) 1 =Ow 
(A.25)

and for J3 (M3 ),
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Re= (A.26)

with the adjoint boundary conditions

1 OU.

= ±6, (A .27)

2(x, Y= +bz) = q3(x,Y = ±b,z) = 0.

It is interesting to note that the optimal input velocity for minimizing the square

magnitude of the mean shear rate at the wall (drag) only contains the linearized ad-

joint pressure fluctuations (equation (A.26)). It should be noted that the linearized

adjoint pressure fluctuations P, appearing in equations (A.18), (A.22), (A.24) and

(A.26), do not necessarily have the same magnitude. It is not clear at this stage
which cost function produces the maximum drag reduction. The cost function J 3

is directly related to the skin friction at the wall. However, skin friction may also
be minimized indirectly through modification of turbulence structures with other

cost functions such as J 2 .
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APPENDIX B

DISTRIBUTED CONTROL OF THE BURGERS EQUATION

The Burgers equation with distributed control is given by equation (4.4) in PART

II. Crank-Nicholson in time and second-order centered difference in space are used

to discretize equation (4.4) in PART II. Analog of equation (3.18) in PART II, then,

reads

A u + ?(u,f) =0, (B.1)

with u =u, f = f', and

n 11 At n

A t -u -W-~- (UA~ ~ ~~~T j i2ReA u+1 -- 2un + 0i-1)

jnuf)=1 At. 2 2A1fnn"(uX~f) =1 -•• -u _1) -Af

_ n- I 1At f n-12 n-12 1 n-1ui + 8 ýX-Ui+l -u- 1  2 1Atf-

i 1 At 0-1 1 -1

2ReAx2 (0+•il 2 l -i 2 !" )7

where fin = cni+ n .0ili and i = 2, ... , I- 1. From equation (4.6) in PART II, the

cost function becomes

l m (ui _ un)2.
J(e") = Z(•,n2 + 2) + Md i+1 1 (B.2)

2 0' 2 Ax
i=2 i=1

From equations (B.1) and (B.2), we find
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R n•= 1 A t , , I'1 = Z--(u--""-D• 4 ti+ ~i+l -i

"VR-nfol " n -- Ata,in,irnli ,
D 15. n W1 -

-R-(&n + &non) = At(& + &n,oni),

i==2< C*(CU"n_-yd), fl >= • (-Un 1+2• - •1 '
i=2

where r.1 = t, and i = 2, ... ,I- 1. For distributed control, 01 is usually taken to

be u. In that case, r.1 = 1. The analog of equation (3.13) in PART II, then, reads

1At n 1 1 At 1 At 1_ n n-
(-- -•u 2 Re A+2) (1 + +Re Az x2 j 1•1,i

.1At n 1 1 At 1 - -n.n (B.3)-I-(]••z~ ~l Re -2) Tn+, = At(&n,i9+ &n,iOn,),

n = c"(x = o) = o, n = n"(C = 1) = o,

1224

where i = 2, ... , 1 - 1.

Using the property of the discrete adjoint operator (e.g. A,ý- = Aji )the analog

of equation (3.14) in PART II is

1 At Un 1 1 At ) C,+ 1 1 At 1_ ~n,, n-
4 -•x i 2R e•--•jx2 n1+( W+ Zx -A--2 1•tt,i 1,i)c

+ 1 At Un 1 1 At ) (n,=1 .-U 1n 0- ) (B.4)
+ E( 4';i - R e t-A-P, i+I =- S--i+l + u I-)

(n' = ¢(, = o) = o, (In = C"(x = 1) = o.
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where i = 2, ... , I- 1.

The directional derivative of J (equation (3.15) in PART II) is

1-1 /-1

VJ I- 1 1
" "E e (idaOi + imdAt~n)&•,i + L (ldac,'i + mdAtOin)&6,i.2 (B.5)

I i---2 i--2

The analog of the gradient algorithm equation (3.11) in PART II consists of

constructing two sequences 0 aI,, recursively defined by

n,k+! nk P0 nk 1 n,k
QOi =aO' -- PO ( Idaoi- +mdA i

(B.6)

"a"0+1 nk -1 .+nk n,k.an'~l - a'k (lda•:,i + •mgtl~ i)I1,i -- 1i -- i 1l

where k is the iteration index, Po, P, > 0, and i = 2, ... , I - 1.

The sensitivity of the cost function with respect to the control variables can be

described by

VDJ n,k n,k nk + Amd
V O' i ' 1,1i) J " dao~i +" Md ti

(B.7)
D.i n,k n,k nnk nk mndk
)al'iaO,i 11i= ldcli + nmd k1i ,i ,

where i=2....,I-.
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APPENDIX C

BOUNDARY CONTROL OF MHE BURGERS EQUATION

The Burgers equation with boundary control is given by equation (4.7) in PART

II. Crank-Nicholson in time and second-order centered difference in space are used

to discretize equation (4.7) in PART II. Analog of equation (3.18) in PART II, then,

reads
A u + =~,0 0, (C.1)

with u = u', t= , and

'u 1( 1 At -n 2unu.ui), for i=2,...,I--1;
2myy ,l [ u i +1 n

Au nu1, for i =1;
uI, for i = I,

1 At (n 2 - u!,12)

n-1 1 A t n-1 2  n-12
I-+u + 8A-x (Ui+i - for i 2,...,1- 1;11 At ,~n_1 i

1Zn(u,•b) = 1 At-)(Uinl -20-1 +un-l)2.R 1 x! in _ -l

- -At(xi + X!"

for i = 1;
for i = I,

where ok. = +n n and i = 0,1. From equation (4.9) in PART II, the cost

function becomes

b = Lb -,n 2 n 2 n 2 -2 -2-1 )21. ._)

J(en) -" 0 (a, 0 +a0,'j ,0+a ?i2) + -- [( A"- A ) (C.2)

From equations (C.1) and (C.2), we find
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n I~~ At (Un tn _nIq(U on) ,n = T""i+li+ -I for i = 2, .. ,I - 1;
vu 10, for i = 1,1,

0, for: = 2,...,1- 1;
D.o 7" = -a,*,, ( =0), for i = 1;

"Du n=nW-( 1), for i = I,

0 for i = 2,..., 1- 1;
VR (an +&•n?) -(&n,o + &nan,), for i = 1;

-(&n

-(, + &n1,11,1), for i = I,

IICU-n• t-(U2  )+( - U-I )2,

< C*(Cun _ 7 d), 7 > =< Cunr -y d, C >

1 n-_ u-)(r2 -_ n) + (U7 - Un 1)(,7, - _

Here we assumed that 01 = 8l(ou/Ox). Hence -Du 7 -- h(OUjz) Vu " ;

where r1 = .(vU•0x)" The analog of equation (3.13) in PART II, then, reads

1 Atn 1 At 1 At ).4
4 E i_1 - •j2) 7l ' +( + - 2) 7?l

1At n 1 1 At ,

(C.3)
n= v,(, = 0) = &o+ &-Gio + a n X 0),

= ~0,0 1, 1,•,0 +1,011.1,0

n = ?"(x = 1) = &n 1 + &yneo,• + an,1  , ( = 1)

where i =2,..., I- 1.
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Using the property of the discrete adjoint operator (e.g. Aj = .Aj), the analog
of equation (3.14) in PART II is

for i = 3,..., 1- 2:

I At n 1 1 At 1 At)"(j-•u 2U z - + (1,x We -E-- -E--z2z2e

1 At 1 1 At)+ ( i- ý-Ou •e-• i+1 0

fori= 1:
1) 1 At n 1 1 At 1(1~~~~ + Z°•° • -4 Ul 2 Tqe Yx-2)( (-_U2 +-U• u)

for i =2:
n 0 1 At I At n 1 1 At

1
-•-•- ( n + un),

fori-- I- 1:(1 At( 1 At) 1 At1

for i = I:
1 1 1 At )A 1

2 e AxT )Qn- + (1 + 1ke 1 C7 (In-, -(- + u(..1)

(C7.4)

The directional derivative of J (equation (3.15) in PART II) is

1 =(ibotUO + mbUn ) &n +n

+(bi ~ 0 mC 6 ,0)&, + (lbcl + mrbC) 60,1) (&.5

+(btO n 1 1 A ( n 1 ^ nn 1)( n n I-

The analog of the gradient algorithm equation (3.11) in PART II consists of
n~k n,k

constructing two sequences c0 , of1 , recursively defined by
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n,k+1 n'k - Po(lban,k+m,')a00  a 0,0 +.C~)

n k+1 n,k _P(bn k n k
Ci0 ;1  = Cio,1 0- 1 +ol~ +MbQj'

(C.6)
an,k+1 n,k _,,,~ b ~e~

a1 0  = l'u l 10an1 mb ,0)

Ckn k+1 n nk - kl lbank
a1 :1  a 1, 1 - 1,1bll+ bý'0:

where k is the iteration index, and po pi > 0.
The sensitivity of the cost function with respect to the control variables can be

described by

~~(a Oia Ii) =- 0',0 + mbc 1 '

vi~ ~ (ankan l 6 a~ nk +bn~k

(C.7)

Vj( n,ak la 'k n bn~o~

DJ j ,') ba + m, 1  1,'0

Vai,i Iag alp, li6a1: mc Il,k

where j =0, 1.
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APPENDIX D

DEPENDENCE OF THE CONTROL ALGORITHM
ON THE TIME-DISCRETIZATION METHOD

In this appendix, a semi-implicit method is used to discretize the Burgers equa-
tion with boundary control (equation (4.7) in PART II): Adams-Bashforth scheme

for the nonlinear term and Crank-Nicholson scheme for the viscous term. The
equations corresponding to equations (C.3) and (C.4) become

1 1 At i At 1 1 At) =,

n n(, 0) ,0 + &no0n, + al,0 1 ,0 -( = 0), (D.1)

= u(x = 1) = &01 + 1111 + 1 , 1, 1e (X = 0),

where i = 2, ... , I- 1.

For i = 3,..., 1 - 2:

1 1 At 1 At 1 1 At n( 2Te Ax_2) Rn1+( e A--x2) 2n +( Re x2') Qi+1 =-0,

for i = 1:

1 1 At 1

for i = 2:
1 n ,f l 1 A t A t 1 n- Q o1 ,0 1', 0 ) 1 + (2 + ( -+ () G3 =-x--- - u 2 1

for i = I- 1:
11 At 1At )1 1
2 e C 12)C_ 2 +(1+ Te~ C2 11+( ali1, 1 2( = + +

for i = I:
II At 1 12We-Zx2) (•I - (1-__x ll , } 1 1 •-( ux 7 +UI I-0.

(D.2)
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Note that only the wall velocity gradients are needed to solve the adjoint equation

(D.2). This fact is, of course, of crucial importance for the physical implementation

of the control algorithm.
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APPENDIX E

A FULLY IMPLICIT METHOD FOR THE UNSTEADY
INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

IN GENERALIZED COORDINATE SYSTEMS

In this appendix, we present a new time-accurate, fully implicit method for the

unsteady incompressible Navier-Stokes equations in generalized coordinate systems.

Fully implicit methods have been used in solving the unsteady compressible Navier-

Stokes equations (Beam & Warming 1978). On the other hand, semi-implicit meth-

ods have been used widely for the unsteady incompressible Navier-Stokes equations

(Kim & Moin 1985 and Rosenfeld et al. 1991). Recently, fully implicit methods

have been used for incompressible flows: Soh & Goodrich (1988) time-advanced the

Navier-Stokes equations in Cartesian coordinates with a Crank-Nicholson method

where a pseudo time was introduced with artificial compressibility in order to satisfy

the continuity equation at the advanced time level. Mansour & Hamed (1990) and

Sotiropoulos & Abdallah (1990) used an implicit Euler method and showed numer-

ical results mostly for steady state problems. Explicit and semi-implicit methods
have been successfully applied to a variety of incompressible flow problems. An

implicit method is preferred when the time-step limit imposed by an explicit or

semi-implicit stability bound must be significantly less than the time-step limit

imposed by the accuracy requirements (i.e. the smallest physical flow time scale).

The small grid size necessary to resolve the smallest spatial scale in turbulent

flows significantly restricts the computational time step for numerical stability when

an explicit or a semi-implicit method is used. This computational time step may

be considerably smaller than any other physical time scales of turbulent flows. For

example, the three-dimensional frequency/wave-number power spectrum of wall-
pressure fluctuations in turbulent channel flow shows that negligible power resides

in the frequency corresponding to two times the computational time step (see figure

9 in Choi & Moin 1990). Furthermore, if the flow geometry contains sharp comers
(e.g. riblet tips), rapid variation of flow variables in their vicinity requires dense

grid clustering which would restrict the computational time step. A fully implicit

method may overcome this restriction with a trade-off of higher operation counts

per time step.
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The fully implicit method developed herein is based on a fractional-step method

(Kim & Moin 1985) in conjunction with a Newton-iterative method to solve the

nonlinear momentum equations. The flow field is represented on a staggered grid,
and a Poisson equation for the pressure correction is solved to satisfy the conti-

nuity equation at every time step. The numerical method is described in section

E.1. Section E.2 provides numerical results for turbulent plane channel flow with

different CFL (Courant-Friedrichs-Lewy) numbers. Also the suitability of a second-

order central-difference scheme for direct simulation of turbulent plane channel flow

is discussed in section E.2. The convergence of the Newton-iterative method for

turbulent flow over riblets is presented in section E.3.

E.1 Numerical method

The governing equations for an incompressible flow are

'Oui 0 iap 1 a a9
+ ýýiuj 2F-+ T ý Ui'(E.1)- uj - Ox- Re Oxj Oxj

Ou_= 0, (E.2)axi

where xi's are the Cartesian coordinates, and ui's are the corresponding velocity

components. All variables are non-dimensionalized by a characteristic velocity and

length scale, and Re is the Reynolds number.

Equations (E.1) and (E.2) are written in the conservative form in generalized

coordinates as

Oqt5F + Ni(q) = -Gi(p) + L'(q) + L'(q), (E.3)

Oqi 1 Oq2  q3 )(E= •- + -k (ý +.-• ý _• 0 (E.4)

where q = (ql, q2, q3 ), N' is the convection term, Gi(p) is the pressure gradi-

ent term, L' and L' are the diffusion terms without and with cross derivatives,
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respectively, and D' is the divergence operator. Here, we introduce generalized

coordinates for the wall-normal and spanwise directions (i.e., (x2, x3) -- (T2, 113)),
and use a Cartesian coordinate for the streamwise direction (171 = Xi). The q3's

are volume fluxes across the faces of the cells, which are equivalent to using the

contravariant velocity components on a staggered grid multiplied by the Jacobian

of the coordinate transformation, J (see figure 3 in PART III). Using this choice,

the discretized mass conservation can be easily satisfied (Rosenfeld et aL. 1991).

The terms in equation (E.3) are (the summation convention applies),

for i = 1,

N = q1qI + ~q q,

Op,
Gl(p) =lo

(E.5)
I (k k q1 10 kj a q. j=k1

L1 Te 10 It, I j ikQ &1 iqj'

1 1  kj a .L• = e Y -j o•- q ; k,

for i = 2,3,

N'• = qlq + -"fr j - ck q qj,

G5(p) =oi'i "
-I (E .6)

i kj 1 mA1 = + 7•,• cI q1; j=k,

R 1 11 m !

W- m ýý-kr -- cjq; - , k,

where ql _ ul, qj = -kuk, ci = (xjlO/17k, • _ J (ck- 1 , ajk _ Jcjc',
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- ,It7'lcl, and j, k,l, m =2,3.

Rewriting equation (E.3) gives

_ = L'(q) - N'(q) - Gi(p), (E.7)0t

where Li = Ll + L2. The integration method used to solve equations (E.7) and

(E.4) is based on a fully implicit, fractional step method; all terms in equation (E.7)

including cross-derivative diffusion terms are advanced with the Crank-Nicholson

method in time, and are resolved with the second-order central-difference scheme

in space using a staggered mesh system.

The fully implicit, fractional step method is given by

i_ qin
S-n + LZ(qn)) - 1 (N'(ei) + (E.8)

q Atq =-G'(On~l), (E.9)At

with

Diqin+l = 0, (E.10)

where 4 is a scalar to be determined and D' is the divergence operator defined

in equation (E.4). Implicit treatment of all the terms eliminates the numerical

stability restriction. Equation (E.8) is a second-order-accurate approximation of

equation (E.7) with G'(p) excluded. By substituting equation (E.9) into equation

(E.8), one can show that the overall accuracy of this splitting method is still second

order. Note that 4 is different from the original pressure: in fact,

-' ) Gi(4 An+l) + t [_La(G(,n+l)) + Ni(G(On+1))] (E.11)

where G = (G1, G2 , G3 ).
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An appropriate boundary condition for the intermediate velocity fields (q') is

needed to solve equation (E.8). Using the method suggested by Kim & Moin
(1985), the resulting boundary condition for intermediate velocity is

q in+I + At Gi(4on) + O(At 2 ). (E.12)

Equations (E.9) and (E.10) can be combined to eliminate qin+l and thus obtain

a Poisson equation for n+l1:

DiGi(On+l) = tDqi. (E.13)

This Poisson equation is solved using a multigrid method (Hackbusch 1985). The

final velocity field qin+1 is then obtained from equation (E.9).

The discretized nonlinear equation (E.8) can be solved using a Newton-iterative

method. From equation (E.8), one gets

q + •At (Ni(,4) - L())= qi - At (Ni(qn) - Li(qn))
(E.14)

Equation (E.14) is rewritten as follows

F'4 -q' + ~At (N'(4) - L'(4~)) Rll=0. (E.15)

t One may consider using an approximate factorization technique after linearization of the non-

linear momentum equations in order to avoid iterative methods. However, this is feasible only when
non-staggered grid systems are used for incompressible Navier-Stokes equations. Also, in the case
of generalized coordinates, the cross-derivative diffusion terms must be treated explicitly to avoid
an iterative solution technique at each step. Such a method may not be accurate when the time
rate of change of the solution is large or when At is large because some of the desirable properties
of the nonlinear equations may be lost upon linearization. However, the Newton-iterative method
described in this appendix retains the nonlinearity of the equations and the factorization error goes
to zero when converged. It also has a quadratic convergence when the initial condition is near the
solution. The disadvantage of using this Newton-iterative method is the added computational effort
at each time step.
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Applying the Newton-iterative method to equation (E.15) gives

6 aFi(4) 1 r(4rr,

0"- =-F'(l), (E.16)

where

OF() i+ -At- (N'(4) - L'(4))

and '.r+l *.r+l ^'.r
6q = qJ - qj

F1(4r) =qI + 2 At (Ni(4r) - L'(4r R-

and r is the iteration index, and j = 1, 2, 3.

Equation (E.16) becomes

I 1 0 O 1

Here, we introduce two variables, Mij and Qj, such that

1y •Lj qJ = = 0-2 (N(4) - L69(,)) 5 ',

(Qiq)r 6 .r f

The equations for Mij and Qij are obtained from equations (E.5) and (E.6):

t Upon convergence, i.e. when q -47+1 -4', F(4) = 0 and equation (E.15) is satisfied.
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For i = 1,

(Mj)7 6rq+ = •--2q" 6q' + -q01 qt + - q bq1

0 (O?6l~+ 1 an 0 6:r+ I
Re ( r+I + L 2 --'kni q r ; %7 = k, (E.18)

(Q4j)" =qL R 8 J, kn06Nn'il n k,

for i = 2,3,

(M,j)r b jr+I - r+l - 1

1 i 1 kr'r 1 J " 1miJ

+ -M- cIqkrQ +I" + YSa c q qrx+l

1 ( 8 0 -6.r+l1 + 8 kn m a .+l nk
Re_1N71N -fn- •7nc•q ) n =k,

(Q~j r -. + 1 1 Lyi 0 lk~n 0 1m,.r'i
d.r+l1 1,0k~ -r+l

(Qijr = •7..,•-k ýý, -•7• nq 3&• k,

where k, 1, m, n = 2, 3. 
(E.19)

Rewriting equation (E.17) gives

j+M21 
r 1

(I, + 2 M2, M.) -AtQij I bqJ -- Fi(,4r). (E.2O)

2,M,
Note that Mi(-- M1l + M4 + M•) is split into three parts such that M1 , Mi,

and M contain the T 1., •1- and q3- derivatives, respectively, and Qj contains

the cross derivatives.

When equation (E.20) is spatially discretized with the second-order central-

difference scheme using a staggered mesh system, Qj and some terms of Mij lead
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to a sparse matrix instead of a tridiagonal matrix. Therefore, terms with Qj and

M 0 j(a : j) are lagged in the iteration procems. Using an approximate factorization

technique (Beam & Warming 1976), the left hand side of equation (E.20) becomes

(no summation on a; a = 1, 2, or 3):

1 ~ ( 1( + At1 3

(1 + ~AtMc) ( 2 +AtMC1) () +44rtM

3 (E.21)
-A 7 tV~ I \ . A '

1-1

where K = 1 forj a and K = 0 for j = a, and j = 1,2,3. The 6qJ is

partially updated during the iteration step (see Step 2 below). Equation (E.21)

is an O(At 3 ) approximation to equation (E.20). However, it requires inversions of

tridiagonal matrices rather than inversion of a large sparse matrix as in the case

of equation (E.20). This results in a significant reduction in computing cost and

memory.

The CFL (Courant-Friedrichs-Lewy) number can be defined in generalized coor-

dinates

The steps taken to advance the flow from time step n to n + 1 are summarized

below

Step 1: Start with an initial condition qo or the solution of the previous time

step qn.

Step 2: Solve the discretized nonlinear momentum equations using the Newton-

iterative method (equation (E.21)) to obtain 1n+l.

Step 2.1: Start with 1r = 4n and jr =b1n.

Step 2.2: Solve equation (E.21) for a - 1 with b*= bQ2r and bj3* = 6q3r

to obtain lr
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Step 2.3: Solve equation (E.21) for a = 2 with 6q 1 - 6qI'+ and

6;3* = 3r to obtain 6,2r+l.

Step 2.4: Solve equation (E.21) for a = 3 with 6q1" = bqr+ and

6i2 - 6  +to obtain q3+

Step 2.5: Update 41r+l.

Step 2.6: Repeat Steps 2.2 - 2.5 until 4r+l converges.

Step 2.7: When converged, 4 n+1 = 41r+l.

Step 3: Solve the Poisson equation (E.13) with 41n+l to obtain on+l.

Step 4: Obtain qn+l using 0n+1 from equation (E.9).

E.2 Application to turbulent plane channel flow

To assess its accuracy the present fully implicit method was applied to a turbulent
plane channel flow. The computation was carried out for a Reynolds number of

4200 based on the laminar centerline velocity U1 and the channel half-width 6.

This Reynolds number corresponds to a Reynolds number of about 180 based on
the turbulent wall-shear velocity ur and the channel half-width 6. For the Reynolds

number considered here, the computational box is chosen to be the minimal flot

unit of Jimenez & Moin (1991); the streamwise and spanwise computational periods

are 7r6 and 0.2897r6, respectively (roughly 570 and 160 wall units). The grid points

used are 16 x 129 x 32 in the x, y and z directions, respectively. Uniform meshes

with spacing Ax+ - 35 and Az+ - 5 are used in the streamwise and spanwise

directions. A non-uniform mesh of 129 points with hyperbolic tangent distribution

is used in the wall-normal direction. The first mesh point away from the wall is

at y+ ; 0.1, and the maximum spacing (at the centerline of the channel) is 8 wall

units.

The initial flow field is an instantaneous solution of the Navier-Stokes equations
using a semi-implicit method. Starting from this initial velocity field, the governing

equations were integrated forward in time until the numerical solutions reached

statistically steady states. These equilibrium states were identified by a quasi-

periodic behavior of the wall-shear stresses. Once the velocity field reached the
statistically steady state, the equations were integrated further in time to obtain
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the time average of the various statistical quantities. The total averaging time

was about 5006/U1 . We also performed a direct numerical simulation of turbulent

plane channel flow using a spectral method at the same Reynolds number, the same

computational box, and the same number of grid points as used in the present study.

The spectral method used in this study is identical to that of Kim et al. (1987).

However, in this study, we used a third-order Runge-Kutta time advancement for

the convective terms instead of the original Adams-Bashforth method. Therefore,

the CFL limit of the present spectral method is V/3/7r(= 0.551). The results of the

computation with the fully implicit method are compared with those of the spectral

computation.

The objecfives of the numerical study presented in this section are two-fold: The

first is to find the largest computational time step (in wall units) which accurately

predicts turbulence statistics in turbulent plane channel flow at a given Reynolds

number The second is to investigate the suitability of the second-order central-

difference scheme for direct numerical simulation of turbulent channel flow.

E.2.1 Effect of the CFL number on turbulence sLdaistics

In this section, the effect of the CFL number

CFL - ( Au + -vy + w)At]

on turbulence statistics is investigated. Six different CFL numbers, CFL = 0.5,

1, 2, 3, 4, and 5, have been investigated. These CFL numbers correspond to the

computational time steps in wall units, At+ - 0.2,0.4,0.8, 1.2, 1.6,2, for the specific

Reynolds number investigated here. The computational time step for the spectral

method is At+ - 0.24 (CFL = v13/7r). Note that the viscous time scale in the

sublayer (the Kolmogorov time scale) is 0(1) in wall units (Tenekes & Lumley 1972

and Jimenez & Moin 1991).

Figure E.1 shows the convergence of the Newton-iterative method for different

CFL numbers. It can be seen that lower convergence rates are obtained for larger

CFL numbers. The relative L2 norm of bfi, L 2(6fir)/L 2(bfi1 ), for the convergence

criterion, is taken to be 10- 4 ; the value of 10-7 gives essentially the same solution.
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Figure E.2 shows the turbulence intensities normalized by the wall shear velocity

along with the spectral result. The results using the present fully implicit method

are shown only for CFL = 0.5,1,2 and 3. The calculations with CFL = 4 and

5 resulted in laminar flow solutions. The calculations with large CFL numbers

overpredict the streamwise fluctuations (urms) and underpredict the normal and

spanwise fluctuations (Vrms, Wrms) when compared with the spectral result. The

Urms and vrine profiles with CFL = 0.5 and I are in good agreement with the

spectral result, but the Wrms profile is underpredicted near y = = 40. This under-

prediction of wrmB near y+ = 40 is also obtained when the number of grid points

are doubled in all three directions (figure E.5).

The Reynolds shear stress profile is shown in figure E.3. The result with CFL -

0.5 is almost identical with the spectral result. The Reynolds shear stress with

CFL = 1 shows some underestimation near the peak (5%). The computations with

larger CFL numbers underpredict the peak Reynolds shear stress when compared

with the spectral result.

Root-mean-square vorticity fluctuations normalized by the mean shear at the

wall (Wiv/u2) are shown in figure E.4 along with the spectral result. For all CFL
numbers the calculations underpredict the streamwise and normal vorticity fluc-
tuations and overpredict the spanwise vorticity fluctuations when near-wall values

are compared with the spectral solution. Local maxima of the streamwise and nor-

mal vorticity fluctuations are lower than those of the spectral result, which is also

obtained even when the number of grid points are doubled (figure E.7) or when a

higher-order-accurate finite-difference scheme is used (Rai & Moin 1991).

The turbulence statistics with CFL = 1 are nearly identical with those with

CFL = 0.5 and are in overall agreement with the spectral result. The computa-

tional time step for CFL = 1 is about 0.05l/U1 (0.4v/u2). This non-dimensional

computational time step is therefore used in the computation of turbulent flow over

riblets (see section E.3).
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E.2.2 Suitability of a second-order central-difference scheme for a direct

numerical simulation of turbulent channel flow

In this section, the accuracy of the second-order central-difference scheme for

direct numerical simulation of turbulent channel flow is investigated. The finite-

difference results are compared with the spectral results. Advantages of finite-

difference schemes over spectral methods are that finite-difference methods can be

applied to complex geometries easily and also can readily employ a fully implicit

time advancement. Rai & Moin (1991) showed that a high-order-accurate upwind

biased finite-difference scheme was a good candidate for direct simulation of tur-

bulent flows. In this study, we investigate the changes of turbulence statistics by

doubling the number of grid points in each direction using a second-order central-

difference scheme.

The basic simulation uses 16 x 129 x 32 grid points in the x, y and z directions,

respectively. The CFL number for these finite-differenced computations is fixed at

1. Two additional computations have been carried out: one by doubling Nx and

Nz, and one by doubling Nx, Ny and Nz, where Nx, Ny and Nz are the number

of grid points in the streamwise, wall-normal and spanwise directions, respectively.

Note that, for the spectral method used for comparison, the time accuracy for the

advancement of the convective terms is third order and the CFL number limit is

about 0.55. Hence, some differences in turbulence statistics between the results

by the finite-difference and spectral methods may exist due to the different com-

putational time steps and the different orders of time accuracy for the convective

terms.

The turbulence intensities normalized by the wall shear velocity are shown in

figure E.5 along with the spectral result. There is no clear trend in the turbu-

lence intensity profiles by doubling the number of grid points. This is probably

due to the dominance of the time advancement errors over spatial discretization

errors. A similar lack of correlation is observed in the Reynolds shear stress pro-

files (figure E.6). Again, as can be seen from a comparison of figures E.3 and E.6,

the disagreement in the peak values of the spectral and fine-mesh finite-difference

calculations is due to the time-advancement errors rather than inadequacy of the

finite-difference simulations. However, the vorticity fluctuations shown in figure E.7

show a clear trend: as the number of grid points increase, the vorticity fluctuation
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profiles approach the spectral result. The vorticity fluctuation profiles with double

the number of grid points in all three directions are in good agreement with the

spectral result even though there is still a slight underprediction near the peaks

of the streamwise and normal vorticity fluctuations. One may suggest, then, that,

when a second-order-accurate finite-difference scheme is used, the same number of

grid points as the spectral scheme is sufficient to have a spectral resolution of the

velocity fluctuations, but the about twice number of grid points in each direction

is necessary to have a spectral resolution of the vorticity fluctuations. The same

conclusion was reached by Herring et al. (1974) in direct numerical simulation of

two-dimensional homogeneous turbulence.

E.3 Computational details for turbulent flow over riblets

In this section we present the convergence of the Newton-iterative method in

a turbulent flow over riblets. Figure E.8 shows the convergence behavior of the

Newton-iterative method for several CFL numbers in the case of the riblet spacing
s+ k 20 and the ridge angle a = 600 (for more details, see table 1 in PART III). It

can be seen that lower convergence rates are obtained for larger CFL numbers.

In section E.2 we found the largest computational time step in wall units which

accurately predicted turbulence statistics in plane channel flow at Rel = 4200. We

have used this same computational time step, AtUl/6 = 0.05 (At+ - 0.4), which

corresponds to CFL , 3 in the channel with riblets (equation (E.22)). About 7

Newton iterations are needed to solve the nonlinear momentum equations. The

relative L2 norm of 6bl, L 2 (6elr)1L 2 (b6e1 ), for the convergence criterion is taken to

be 10-4. The value of 10-6 gives essentially the same solution.

The present fully implicit method allows a larger computational time step with

a trade-off of a higher operational count per time step to solve the nonlinear mo-

mentum equations. However, it should also be noted that with a conventional

semi-implicit method about 70% of total computational time is consumed in solv-

ing the Poisson equation (E.13) at each time step. Therefore, fully implicit methods

save a significant portion of the CPU time in solving the Poisson equation by allow-

ing larger time steps. The conventional semi-implicit method would have required

about a five fold increase in the required CPU time for the present problem.

Turbulence statistics obtained using the present fully implicit methods are pre-

sented in PART III and appendix F.
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APPENDIX F

TURBULENCE STATISTICS ABOVE THE RIBLETS
WITH a = 450 FOR CASES s+ z 40 AND s+ • 20

In this appendix, we present turbulence statistics above the riblets with a = 450

for cases 8+ ; 40 and s+ - 20. These statistical results show nearly the same trend

as those above the riblet with a = 600. However, the changes in the magnitude

of the turbulence statistics above the riblets with a = 450 are less significant than

those above the riblets with a = 600.

Figure F.1 shows the variation of the mean velocity in the transverse plane.

As also seen for cases with a = 600, no apparent spanwise variation of the mean

velocity is found above y/ 6 st -0.9 in the case s+ ;z 20 or above y/6 •, -0.8 in

the case s+ ;, 40. The spanwise variation of the mean velocity occurs only very

near the riblets where, at a given y, the mean velocity above the riblet valley is

larger than that above the riblet tip. The wall-shear velocity and the location of

the virtual origin for each riblet configuration are listed in table 3 in PART III.

The mean-velocity profiles based on these virtual origins for cases with a = 450

are obtained and compared with those based on other choices of the virtual origins

in figure F.2. The mean-velocity profiles by the method of Bechert & Bartenwerfer

(1989) and equation (4.4) in PART III are nearly identical in the log-law region.

The upward and downward shifts in the log-law are clearly seen for drag-decreasing

and drag-increasing cases, respectively.

Turbulence intensity profiles at various spanwise locations are shown in figure

F.3. Significant variations of the turbulence intensities occur only very near the

riblets in the case s+ ;, 20, while, in the case s+ ; 40, effects of the riblets

penetrate further into the channel. Reduction of all three components of turbulent

intensity by the riblets is found in the drag-reducing configuration (s+ ,z 20).

Turbulence intensities increase near the riblets in the case s+ ; 40 (the drag-

increasing configuration).

"Turbulence intensities normalized by either ur! (for the flat plate) or .*r (for the

plate with riblets) are shown in figure F.4. The y+ locations of the peak streamwise

velocity fluctuations above both the flat plate and the riblets are nearly identical
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due to the particular choice of the virtual-origin location (equation (4.4) in PART

III). Profiles of vrm8 and wrm. are also nearly identical. The viscous sublayer is

significantly modified by the riblets in all configurations.

The Reynolds shear stress -uYv, normalized by the mean centerline velocity,

is shown in figure F.5. In the case s+ ; 20, the maximum Reynolds shear stress

above the riblets is reduced as compared with that above the flat plate, and there

is negligible spanwise variation of the Reynolds shear stress near the riblets. In

the case j+ ; 40, however, the maximum Reynolds shear stress above the riblets

is increased above the riblet tip and is nearly unaffected above the riblet valley

as compared to the flat plate side. There is also substantial spanwise variation of

-uYI near the riblets in this case.

Root-mean-square vorticity fluctuations normalized by the mean centerline ve-

locity and the channel half-width are shown in figure F.6. All three vorticity fluctua-

tion components reach their maximum values at the riblet tip. Significant spanwise

variations of the vorticity fluctuations occur only very near the riblets in the case

s+ ; 20, while in the case s+ ; 40, there is further penetration into the channel.

Reductions of all three components of the vorticity fluctuations by the riblets

occur in the drag-reducing configuration (s+ • 20). The local maximum of the

streamnwise vorticity fluctuations above the riblets is reduced as compared with

that above the flat plate. The local maximum of the normal vorticity fluctuation is

reduced only marginally. In the case s+ • 40, vorticity fluctuations are increased

above the riblets.
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